| 研究生: |
林真襄 Lin, Zhen-Xiang |
|---|---|
| 論文名稱: |
羅望子木葡聚醣對由脂多醣及半乳糖胺誘發小鼠猛爆性肝炎之影響 Effect of Tamarind Xyloglucan on Lipopolysaccharide/D-Galactosamine-Induced Fulminant Hepatitis in Mice |
| 指導教授: |
劉明毅
Liu, Ming-Yie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 猛爆性肝炎 、羅望子木葡聚醣 、脂多醣 、半乳糖胺 |
| 外文關鍵詞: | Fulminant hepatitis, Tamarind xyloglucan, lipopolysaccharide, D-galactosamine |
| 相關次數: | 點閱:119 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
猛爆性肝炎是一種會危及生命的臨床綜合症,其發病時間無法預測且病程發展快速,使患者的死亡率高達80%。許多研究表明猛爆性肝炎的致病機制與病程發展,發炎反應與氧化壓力參與其中。羅望子(Tamarindus indica L.)在許多熱帶地區國家被用來作為傳統藥草,從羅望子種子中提取的羅望子木葡聚醣具有良好的抗氧化以及抗發炎作用,並且益於肝臟再生作用,但尚未有研究探討其對於猛爆性肝炎的效用,因此本研究旨在利用脂多醣(LPS)與半乳糖胺(GalN)的動物實驗誘導模式來誘發小鼠產生類似臨床的猛爆性肝炎,藉以探討羅望子木葡聚醣對於猛爆性肝炎之影響。實驗設計為將C57BL/6J雄性小鼠隨機分成五組,每組6隻。在實驗開始前三天,正常組和LPS/GalN組以餵管每天給予生理食鹽水1 ml/kg,LT1、LT3與LT10組每天給予其對應劑量1、3或10 mg/kg的羅望子木葡聚醣。於實驗開始時以腹腔注射LPS/GalN (20μg/200mg/kg)於LPS/GalN組、LT1、LT3及LT10組來誘發猛爆性肝炎,並於注射後六小時犧牲,取所有小鼠肝臟和血液進行後續分析。結果顯示,羅望子木葡聚醣可以降低肝臟損傷生化指標AST、ALT及肝臟發炎指標ALP,在肝臟切片中觀察到其減少發炎細胞浸潤與肝細胞壞死、變性情形,並且減少肝臟組織中腫瘤壞死因子-α、介白質-6、介白質-1β和介白質-10的表現量,降低脂質過氧化反應與血清中尿酸含量,增加肝臟中抗氧化物質穀胱甘肽及超氧化物歧化酶,且抑制NF-κB訊號路徑相關蛋白NF-κB、磷酸化IKK-α與磷酸化IκB-α蛋白表現量,以及降低TLR4蛋白表現量。綜合上述結果,羅望子木葡聚醣能減緩由脂多醣與半乳糖胺誘發的猛爆性肝炎,此作用可能是經由抑制TLR4/NF-κB訊號路徑的活化並降低發炎反應與氧化壓力。
The symptoms of fulminant hepatitis developed and become severe very quickly in days or weeks after the appearance of the first sign of liver disease. In clinical studies, the mortality is up to 80% in patients with fulminant hepatitis. Hepatic inflammation and oxidative stress have been suggested to be involved in the pathogenesis and development of fulminant hepatitis. Lipopolysaccharide (LPS)/ D-galactosamine (GalN)-induced liver injury is a well-known experimental model that closely resembles clinical fulminant hepatitis. Tamarind xyloglucan (TXG), a natural polysaccharide extracted from tamarind seeds, has excellent anti-oxidative and anti-inflammatory effects. TXG would attenuate the disease severity of fulminant hepatitis; however, the effect of TXG on fulminant hepatitis has never been investigated. The aim of this study was to investigate the effect of TXG on LPS/ GalN-induced fulminant hepatitis in mice. Male C57BL/6 mice were randomly assigned into five groups (n=6 per group): Normal group and LPS/GalN group mice were only given saline orally (1 ml/kg) for 3 days prior to LPS/GalN injection; Groups LT1, LT3, and LT10 mice were given tamarind xyloglucan (1, 3 and 10 mg/kg, orally) for 3 days prior to LPS/GalN injection. Groups LPS/GalN, LT1, LT3, and LT10 were given one injection of LPS/GalN (20 μg/200 mg/kg, i.p.). Liver and blood samples were collected 6 h after LPS/GalN injection. LPS/GalN increased serum AST, ALT, inflammatory cytokines, oxidative stress, neutrophil aggregation and hepatic histological changes. The levels of serum AST, ALT, inflammatory cytokines, oxidative stress, neutrophil aggregation and hepatic histological changes were attenuated in LT groups compared with LPS/GalN group. In conclusion, TXG may attenuate LPS/GalN-induced-fulminant hepatitis by reducing inflammation and oxidative stress via inhibition of the TLR4/NF-κB signal pathway in mice.
Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et biophysica acta (BBA) - molecular basis of disease 1863:585-597. 2017.
Aratani Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Archives of biochemistry and biophysics 640:47-52. 2018.
Aravind SR, Joseph MM, Varghese S, Balaram P, Sreelekha TT. Antitumor and immunopotentiating activity of polysaccharide pst001 isolated from the seed kernel of tamarindus indica: An in vivo study in mice. The scientific world journal 2012:361382. 2012.
Arshad MS, Imran M, Ahmed A, Sohaib M, Ullah A, Nisa Mu, et al. Tamarind: A diet-based strategy against lifestyle maladies. Food science and nutrition 7:3378-3390. 2019.
Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine oxidoreductase-derived reactive species: Physiological and pathological effects. Oxidative medicine and cellular longevity 2016:3527579. 2016.
Bernal W, Wendon J. Acute liver failure. The new England journal of medicine 369:2525-2534. 2013.
Bhadoriya SS, Ganeshpurkar A, Narwaria J, Rai G, Jain AP. Tamarindus indica: Extent of explored potential. Pharmacognosy reviews 5:73-81. 2011.
Bowie A, O'Neill LA. Oxidative stress and nuclear factor-kappab activation: A reassessment of the evidence in the light of recent discoveries. Biochemical pharmacology 59:13-23. 2000.
Brown KE, Brunt EM, Heinecke JW. Immunohistochemical detection of myeloperoxidase and its oxidation products in kupffer cells of human liver. The american journal of pathology 159:2081-2088. 2001.
Chung RT, Stravitz RT, Fontana RJ, Schiodt FV, Mehal WZ, Reddy KR, et al. Pathogenesis of liver injury in acute liver failure. Gastroenterology 143:e1-e7. 2012.
Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatric nephrology (Berlin, Germany) 34:975-991. 2019.
Dong Z, Yuan Y. Accelerated inflammation and oxidative stress induced by lps in acute lung injury: Ιnhibition by st1926. International journal of molecular medicine 41:3405-3421. 2018.
Elmarakby AA, Sullivan JC. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovascular therapeutics 30:49-59. 2012.
Fook JM, Macedo LL, Moura GE, Teixeira FM, Oliveira AS, Queiroz AF, et al. A serine proteinase inhibitor isolated from tamarindus indica seeds and its effects on the release of human neutrophil elastase. Life sciences 76:2881-2891. 2005.
Friedl HP, Till GO, Ryan US, Ward PA. Mediator-induced activation of xanthine oxidase in endothelial cells. Federation of american societies for experimental biology 3:2512-2518. 1989.
Fyfe B, Zaldana F, Liu C. The pathology of acute liver failure. Clinics in liver disease 22:257-268. 2018.
Gao K, Liu F, Chen X, Chen M, Deng Q, Zou X, et al. Crocetin protects against fulminant hepatic failure induced by lipopolysaccharide/d-galactosamine by decreasing apoptosis, inflammation and oxidative stress in a rat model. Experimental and therapeutic medicine 18:3775-3782. 2019.
Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: Toll-like receptors. Free radical biology and medicine 48:1121-1132. 2010.
Hall P, Cash J. What is the real function of the liver 'function' tests? The ulster medical journal 81:30-36. 2012.
Hamesch K, Borkham-Kamphorst E, Strnad P, Weiskirchen R. Lipopolysaccharide-induced inflammatory liver injury in mice. Laboratory animals 49:37-46. 2015.
Ho CM, Lee CH, Wang JY, Lee PH, Lai HS, Hu RH. Nationwide longitudinal analysis of acute liver failure in taiwan. Medicine 93:e35. 2014.
Holland SM, Rosenzweig SD, Schumacher RF, Notarangelo LD. 78 - immunodeficiencies. In: Infectious diseases (fourth edition), (Cohen J, Powderly WG, Opal SM, eds):Elsevier, 705-722.e702. 2017.
Hori T, Chen F, Baine AM, Gardner LB, Nguyen JH. Fulminant liver failure model with hepatic encephalopathy in the mouse. Annals of gastroenterology 24:294-306. 2011.
Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: The therapeutic potential of nrf2 activation. Molecular aspects of medicine 32:234-246. 2011.
Imlay JA. Pathways of oxidative damage. Annual review of microbiology 57:395-418. 2003.
Ito Y, Abril ER, Bethea NW, McCuskey MK, Cover C, Jaeschke H, et al. Mechanisms and pathophysiological implications of sinusoidal endothelial cell gap formation following treatment with galactosamine/endotoxin in mice. American journal of physiology Gastrointestinal and liver physiology 291:G211-218. 2006.
Jones DP. Radical-free biology of oxidative stress. American journal of physiology cell physiology 295:C849-868. 2008.
Kemelo MK, Wojnarová L, Kutinová Canová N, Farghali H. D-galactosamine/lipopolysaccharide-induced hepatotoxicity downregulates sirtuin 1 in rat liver: Role of sirtuin 1 modulation in hepatoprotection. Physiological research 63:615-623. 2014.
Kozioł A, Cybulska J, Pieczywek PM, Zdunek A. Evaluation of structure and assembly of xyloglucan from tamarind seed (tamarindus indica l.) with atomic force microscopy. Food biophysics 10:396-402. 2015.
Kubes P, Jenne C. Immune responses in the liver. Annual review of immunology 36:247-277. 2018.
Lefkowitch JHM. The pathology of acute liver failure.[review]. Advances in anatomic pathology 23(3):144-158. 2016.
Li S, Hong M, Tan HY, Wang N, Feng Y. Insights into the role and interdependence of oxidative stress and inflammation in liver diseases. Oxidative medicine and cellular Longevity 2016:4234061. 2016.
Lundberg AM, Hansson GK. Innate immune signals in atherosclerosis. Clinical immunology (Orlando, Fla) 134:5-24. 2010.
Lv H, Yang H, Wang Z, Feng H, Deng X, Cheng G, et al. Nrf2 signaling and autophagy are complementary in protecting lipopolysaccharide/d-galactosamine-induced acute liver injury by licochalcone a. Cell death discovery 10:313-313. 2019.
Lyu Z, Ji X, Chen G, An B. Atractylodin ameliorates lipopolysaccharide and d-galactosamine-induced acute liver failure via the suppression of inflammation and oxidative stress. International Immunopharmacology 72:348-357. 2019.
Ma Q. Role of nrf2 in oxidative stress and toxicity. Annual review of pharmacology and toxicology 53:401-426. 2013.
Maes M, Vinken M, Jaeschke H. Experimental models of hepatotoxicity related to acute liver failure. Toxicology and applied pharmacology 290:86-97. 2016.
Malleo G, Mazzon E, Siriwardena A, Cuzzocrea S. Tnf-α as a therapeutic target in acute pancreatitis — lessons from experimental models. The scientific world journal 7:431-448. 2007.
Nie W, Deters AM. Tamarind seed xyloglucans promote proliferation and migration of human skin cells through internalization via stimulation of proproliferative signal transduction pathways. Dermatology research and practice 2013:359756. 2013.
Pereda J, Sabater L, Cassinello N, Gómez-Cambronero L, Closa D, Folch-Puy E, et al. Effect of simultaneous inhibition of tnf-alpha production and xanthine oxidase in experimental acute pancreatitis: The role of mitogen activated protein kinases. Annals of surgery 240:108-116. 2004.
Periasamy S, Lin C-H, Nagarajan B, Sankaranarayanan NV, Desai UR, Liu M-Y. Tamarind xyloglucan attenuates dextran sodium sulfate induced ulcerative colitis: Role of antioxidation. Journal of functional foods 42:327-338. 2018.
Piqué N, Gómez-Guillén MDC, Montero MP. Xyloglucan, a plant polymer with barrier protective properties over the mucous membranes: An overview. International journal of molecular sciences 19. 2018.
Rajaram P, Subramanian R. Acute liver failure. Seminars in respiratory and critical care medicine 39:513-522. 2018.
Razali N, Mat Junit S, Ariffin A, Ramli NS, Abdul Aziz A. Polyphenols from the extract and fraction of t. Indica seeds protected hepg2 cells against oxidative stress. BMC complementary and alternative medicine 15:438. 2015.
Schieber M, Chandel NS. Ros function in redox signaling and oxidative stress. Current biology : CB 24:R453-462. 2014.
Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15:252-259. 2007.
Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS, Pujari VB. Inflammation and cancer. Annals of African medicine 18:121-126. 2019.
Singh R, Malviya R, Sharma PK. Extraction and characterization of tamarind seed polysaccharide as a pharmaceutical excipient. Pharmacognosy journal 3:17-19. 2011.
Sreelekha TT, Vijayakumar T, Ankanthil R, Vijayan KK, Nair MK. Immunomodulatory effects of a polysaccharide from tamarindus indica. Anti-cancer drugs 4:209-212. 1993.
Stravitz RT, Lefkowitch JH, Fontana RJ, Gershwin ME, Leung PS, Sterling RK, et al. Autoimmune acute liver failure: Proposed clinical and histological criteria. Hepatology (Baltimore, Md) 53:517-526. 2011.
Stuart WD, Kulkarni RM, Gray JK, Vasiliauskas J, Leonis MA, Waltz SE. Ron receptor regulates kupffer cell-dependent cytokine production and hepatocyte survival following endotoxin exposure in mice. Hepatology (Baltimore, Md) 53:1618-1628. 2011.
Sundaram MS, Hemshekhar M, Santhosh MS, Paul M, Sunitha K, Thushara RM, et al. Tamarind seed (tamarindus indica) extract ameliorates adjuvant-induced arthritis via regulating the mediators of cartilage/bone degeneration, inflammation and oxidative stress. Scientific reports 5:11117. 2015.
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 140:805-820. 2010.
Thanapirom K, Treeprasertsuk S, Soonthornworasiri N, Poovorawan K, Chaiteerakij R, Komolmit P, et al. The incidence, etiologies, outcomes, and predictors of mortality of acute liver failure in thailand: A population-base study. BMC Gastroenterology 19:18. 2019.
Ushanandini S, Nagaraju S, Harish Kumar K, Vedavathi M, Machiah DK, Kemparaju K, et al. The anti-snake venom properties of tamarindus indica (leguminosae) seed extract. Phytotherapy research : PTR 20:851-858. 2006.
Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between nrf2 and nf-κb response pathways. Biochemical society transactions 43:621-626. 2015.
WHITEMAN K, MCCORMICK C. When your patient is in liver failure. Nursing2020 35:58-63. 2005.
Williams R. Classification, etiology, and considerations of outcome in acute liver failure. Seminars in liver disease 16:343-348. 1996.
Xia X, Su C, Fu J, Zhang P, Jiang X, Xu D, et al. Role of α-lipoic acid in lps/d-galn induced fulminant hepatic failure in mice: Studies on oxidative stress, inflammation and apoptosis. International immunopharmacology 22:293-302. 2014.
Zhang H, Jia R, Wang F, Qiu G, Qiao P, Xu X, et al. Catalpol protects mice against lipopolysaccharide/d-galactosamine-induced acute liver injury through inhibiting inflammatory and oxidative response. Oncotarget 9:3887-3894. 2018.
Zhang S, Yang N, Ni S, Li W, Xu L, Dong P, et al. Pretreatment of lipopolysaccharide (lps) ameliorates d-galn/lps induced acute liver failure through tlr4 signaling pathway. International journal of clinical and experimental pathology 7:6626-6634. 2014.
Zhong W, Qian K, Xiong J, Ma K, Wang A, Zou Y. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via pi3k/akt and nf-κb related signaling. Biomedicine and pharmacotherapy 83:302-313. 2016.