| 研究生: |
賀詩欣 Ho, Shih-Hsin |
|---|---|
| 論文名稱: |
結合一維膠電泳與液相層析-串聯式質譜儀分析急性肺發炎中支氣管肺泡沖洗液的蛋白分佈輪廓 Analysis of protein profiling in bronchoalveolar lavage (BAL) fluid by the combination of one-dimensional electrophoresis and liquid chromatography-tandem mass spectrometry after acute lung injury (ALI) |
| 指導教授: |
蔡美玲
Tsai, Mei-Ling 陳淑慧 Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 極端細微的粒子 、肺泡血管間的通透性 、急性肺發炎 、肺泡沖洗液 |
| 外文關鍵詞: | ultrafine particle, alveolar-capillary permeability, acute lung injury, BAL |
| 相關次數: | 點閱:57 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當我們進入21世紀,一種新的粒子種類-極端細微的粒子(ultrafine particle)-已經顯露出它對於疾病的影響及扮演一個很有潛力的角色。一般說來,ultrafine particle是指粒徑小於100nm的細微粒子。最近在毒物學的研究中預測在同等的質量濃度下,有一些ultrafine particle毒性比fine particle來的更強;而ultrafine particle 可以直接穿過肺的組織並造成在肺泡堆積。在我們的研究裡,發現ultrafine carbon particle (ufCB)能在A549細胞中刺激活性氧分子(ROS)的生成。在小鼠的動物模型中,由ufCB刺激產生的活性氧分子(ROS)會引起上皮細胞傷害(Epithelial damage),而藉由觀察血管內皮的鈣離子依賴性黏著分子(Vascular endothelial cadherin, VE-cadherin)的蛋白下降表現去推測肺泡血管間的通透性(alveolar-capillary permeability)增加;並且藉由觀察在肺中的肺水堆積去判定急性肺發炎(acute lung injury)。
近年來,有些研究團隊認為用肺泡沖洗液(BAL fluid)來研究肺部蛋白質體學(Lung proteome)是可行的。而肺泡沖洗液(BAL fluid)也已經被使用在肺部疾病的診斷及肺部發言的研究。依遽Markus Schirle et al (2003)的報告指出,一個簡單的方法-一維膠電泳(One-dimensional gel electrophoresis, 1-DE)結合液相層析-串聯式質譜儀 (Liquid Chromatography Tandem mass spectrometry, LC-MS/MS) (GeLC-MS/MS),已經變成了一種在蛋白質體學分析中很有用的工具。而在我們的研究中,我們也利用了這個分析方法(GeLC-MS/MS)來分析研究肺泡沖洗液(BAL fluid)。超過65個蛋白從50μg的肺泡沖洗液(BAL fluid)蛋白被鑑定出,而這些蛋白中包含了很多血漿蛋白(plasma proteins)、蛋白脢抑制劑(protease inhibitor)和抗氧化物(antioxidant)。
一般來說,在肺泡沖洗夜(BAL fluid)觀察血漿蛋白(plasma)的濃度是一種判定發炎很重要的特徵;而血管內皮生長因子(Vascular endothelial growth factor, VEGF)在肺泡沖洗液(BAL fluid)中的蛋白量則是一個很重要的通透性指標。在我們的研究中,在肺泡沖洗液(BAL fluid)血清白蛋白(albumin)的濃度會隨著用ufCB刺激而增加,並且與血管內皮生長因子(VEGF)的產生量有高度的正相關。而與血清白蛋白(albumin)的功能做比較,α2-巨球蛋白(α2-Macroglobulin)有相似的影響並且推測其為更好的氣管中血漿蛋白(plasma)釋出的指標,而且推測它有很好的潛力去作為一個判斷血管通透性(Capillary permeability)的生物指標(Biomarker)。
As we enter the 21st century, a new particle type—the ultrafine particle—has emerged as one with a potential role in causing disease. Particles that are less than 100 nm in diameter are commonly defined as ultrafine. Recent toxicological studies indicate that some ultrafine particles are more toxic than fine particles at an equal mass concentration and ultrafine particles can penetrate directly in the lung tissues and deposited in the alveoli. In our study, ufCB can stimulate the production of ROS in A549 cells. The ufCB-induced ROS production would cause the epithelial damage to increase alveolar-capillary permeability with a decrease in the expression of VE-cadherin and fluid accumulation in alveolar to induce the acute lung injury in murine model.
Recently, some research groups demonstrated that approaching the lung proteome is possible using BAL fluid. Evaluation of BAL fluid has been useful in diagnosis and research of several inflammatory lung diseases. According to the report of Markus Schirle et al (2003), a simple method, one-dimensional gel electrophoresis (1-DE) combined with nano-Liquid Chromatography Tandem mass spectrometry (nano-LC/MS/MS) (GeLC-MS/MS), has been applied as a power approaches for the proteome analysis of bronchoalveolar lavage (BAL) in our study. Up to 65 proteins were identified from 50 μg of total proteins including common components of plasma, protease inhibitor or antioxidant.
Generally speaking, plasma leakage in BAL is an important feature of inflammation and the protein abundance of VEGF is an important permeability factor. In our study, albumin concentration in BAL increases in ufCB exposure and is highly related to VEGF production. Compared with the function of albumin, α2-Macroglobulin is similar to albumin and has been suggested to better reflect the plasma leakage in the airways and more potential to be a biomarker in capillary permeability.
[1] Amelie Plymoth, Claes-Goran Lofdahl, Ann Ekberg-Jansson, Magnus Dahlback, Henrik Lindberg, Thomas E. Fehniger, Gyorgy Marko-Varga. Human bronchoalveolar lavage: Biofluid analysis with special emphasis on sample preparation. Proteomics 2003, 3, 962–972.
[2] Armstrong L, Millar AB. Relative production of tumour necrosis factor-alpha and IL-10 in ARDS. Thorax 1997; 52: 442-446
[3] Aebersold RH, Leavitt J, Saavedra RA, Hood LE, and Kent SB. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci USA 84: 6970–6974, 1987.
[4] A Kurdowska, FK Carr, MD Stevens, RP Baughman and TR Martin. Studies on the interaction of IL-8 with human plasma a2-macroglobulin. J.Immunol., Vol 158, Issue 4 1930-1940.
[5] Bell, A. W., Ward, M. A., Freeman, H. N., Choudhary, J. S. Proteomics characterization of abundant Golgi membrane proteins. J. Biol. Chem. 2001, 276, 5152–5165.
[6] Biemann K and Scoble HA. Characterization by tandem mass spectrometry of structural modifications in proteins. Science 237: 992–998, 1987.
[7] Bell, D. Y., Haseman, J. A., Spock, A., McLennan, G., Hook, G. E. Plasma proteins of the bronchoalveolar surface of the lungs of smokers and nonsmokers. Am. Rev. Respir. Dis. 1981, 124, 72–79.
[8] Bell DY, Hook GE. Pulmonary alveolar proteinosis: analysis of airway and alveolar proteins Am Rev Respir Dis 119: 979–990, 1979.
[9] Chih-Ching Chang, Hui-Fen Chiu, Yih-Shyuan Wu, Yi-Chih Li, Mei-Ling Tsai, Chen-Kuo Shen, and Chun-Yuh Yang. The Induction of vascular Endothelial Growth Factor by Ultrafine Carbon Black Contributes to the Increase of Alveolar-Capillary Permeability. Environmental Health Perspectives 2005; 113:454-460.
[10] Courtney A, Granville, and Phillip A. Dennis. An Overview of Lung Cancer Genomics and Proteomics. Am J Respir Cell Mol Biol Vol 32. pp 169–176, 2005
[11] Chang He. Proteomic analysis of human bronchoalveolar lavage fluid: expression profiling of surfactant-associated protein A isomers derived from human pulmonary alveolar proteinosis using immunoaffinity detection. Proteomics 2003, 3, 87–94
[12] Clauser KR, Baker P, and Burlingame AL. Role of accurate mass measurement (10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem 71: 2871–2882, 1999.
[13] Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, and Dejana E. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo Proc Natl Acad Sci USA 96: 9815–9820, 1999.
[14] Donaldson K, Stone V, MacNee W. The toxicology of ultrafine particles. In: Maynard RL, Howard CV, eds. Particulate matter: properties and effects upon health. Oxford: Bios Scientific, 1999.
[15] Delacroix, D. L., Marchandise, F. X., Francis, C., Sibille, Y. Alpha-2-macroglobulin, monomeric and polymeric immunoglobulin A, and immunoglobulin M in bronchoalveolar lavage. Am. Rev. Respir. Dis. 1985, 132, 829–835.
[16] Eng, J., McCormack, A., and Yates, J. An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database. (1994) J. Am. Soc. Mass Spectrom. 5, 976–989
[17] Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P., Grant, S. G. Isolation of 2000-kDa complexes of N-methyl-D-aspartate receptor and postsynaptic density 95 from mouse brain. Nat. Neurosci. 2000, 3, 661–669.
[18] Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., and Watanabe, C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 5011–5015
[19] Isabelle Noel-Georis, Alfred Bernard, Paul Falmagne, Ruddy Wattiez. Database of bronchoalveolar lavage fluid proteins. Journal of Chromatography B, 771 (2002) 221–236
[20] Jan Hirsch, Kirk C. Hansen, Alma L. Burlingame, and Michael A. Matthay. Proteomics: current techniques and potential applications to lung disease. Am J Physiol Lung Cell Mol Physiol 287: L1–L23, 2004
[21] Johar D, Roth JC, Bay GH, Walker JN, Kroczak TJ, Los M. Inflammatory response, reactive oxygen species, programmed (necrotic-like and apoptotic) cell death and cancer. Annals Academiae Medicae Bialostocensis, 2004, 49, 31-39
[22] K Donaldson, V Stone, A Clouter, L Renwick and W MacNee. Ultrafine particles. Occup. Environ. Med. 2001;58;211-216
[23] Luca Signor, Bruno Tigani, Nicolau Beckmann, Rocco Falchetto and Markus Stoeckli. Two-dimensional electrophoresis protein profiling and identification in rat bronchoalveolar lavage fluid following allergen and endotoxin challenge. Proteomics 2004, 4, 2101–2110
[24] Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., . Gregory J. Mize3, David R. Morris3, Barbara M., Garvik4, and John R. Yates, III. Direct analysis of protein complexes using mass spectrometry, Nat. Biotechnol. 1999, 17, 676–682.
[25] Larsson K, Eklund A, Hansson L-O, Isaksson B-M, Malmberg P. Swine dust causes intense airways inflammation in health subjects. Am J Respir Crit Care Med 150(1994): 973-977
[26] Lenz, A. G., Meyer, B., Costabel, U.,Maier, K. Bronchoalveolar lavage proteins in human lung disease: analysis by two-dimensional electrophoresis. Electrophoresis 1993, 16, 242-244.
[27] LeBel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2´,7´-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 1992, 5:227–231.
[28] Mura M, Dos Santos CC, Stewart D, Liu, M. Vascular endothelial growth factor and related molecules in acute lung injury. J Appl Physiol 2004;97:1605–17.
[29] Markus Schirle, Marie-Anne Heurtier, and Bernhard Kuster. Profiling Core Proteomes of Human Cell Lines by One-dimensional PAGE and Liquid Chromatography-Tandem Mass Spectrometry. Molecular & Cellular Proteomics 2, 2003, 1297-1305.
[30] Wasinger, V. C., Pollack, J. D., Humphery-Smith, I. The proteome of Mycoplasma genitalium ; CHAPS soluble component. Eur. Biochem. 2000, 267, 1571–1582.
[31] MacGillivray, A. J., Rickwood, D. The heterogeneity of mouse-chromatin nonhistone proteins as evidenced by two-dimensional polyacrylamide-gel electrophoresis and ion-exchange chromatography. Eur. J. Biochem. 1974, 41, 181–190
[32] Olof Vesterberg, Lena Palmberg, Kjell Larsson. Albumin, transferrin and α2-Macroglobulin in bronchoalveolar lavage fulid following exposure to organic dust in healthy subjects. Int Arch Occup Environ Health (2001) 74: 249-254
[33] Peter HM Hoet, Irene Bruske-Hohlfeld and Oleg V Salata. Nanoparticles-known and unknown health risks. J of Nanobiotechnology 2004, 2: 12
[34] Pawliczak R. The role of radical oxygen species in airway inflammation. Pol Merkuriusz Lek, 2003; 14: 493-6.
[35] Rabilloud, T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. (2002) Proteomics 2, 3–10.
[36] Seishiro Hirano, Hiroshi Nitta, Yuichi Moriguchi, Shinji Kobayashi, Yoshinori Kondo, Kiyoshi Tanabe, Takahiro Kobayashi, Shinji Wakamatsu, Masatoshi Morita and Satoshi Yamazaki. Nanoparticles in emissions and atmospheric environment: Now and future. Journal of Nanoparticle Research 5: 311–321, 2003.
[37] Sabounchi-Schutt, F., Astrom, J., Eklund, A., Grunewald, J., Bjellqvist, B. Detection and identification of human bronchoalveolar lavage proteins using narrow-range immobilized pH gradient DryStrip and the paper bridge sample application method. Electrophoresis, 2001, 22, 1851–1860.
[38] Svensson C, Gronneberg R, Andersson M, Alkner U, Andersson O, Billing B, Giljam H, Greiff L, Persson CGA (1995) Allergen challenge-induced entry of α2-macroglobulin and tryptase into human nasal and bronchial airways. J Allergy Clin Immunol 96: 239-246.
[39] Thickett DR, Armstrong L, Christie SJ, Millar AB. Vascular endothelial cell growth factor contributes to increased vascular permeability in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 164: 1601-1605 (2001).
[40] Thickett DR, Armstrong L, Millar AB. Vascular endothelial growth factor (VEGF) in inflammatory and malignant pleural effusions. Thorax 1999;54: 707–10.
[41] Van Vyve T, Chanez P, Bernard A, Bousquet J, Godard P, Lauwerijs R. Y protein content in bronchoalveolar lavage fluid of patients with asthma and control subjects. J Allergy Clin Immunol 1995;95:60-68.
[42] Washburn, M. P., Wolters, D., Yates, J. R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 2001, 19, 242–247.
[43] Wattiez, R., Hermans, C., Cruyt. C., Bernard, A., Falmagne, P. Human bronchoalveolar lavage fluid protein two-dimensional database: Study of interstitial lung diseases. Electrophoresis 2000, 21, 2703–2712.
[44] Wattiez, R., Hermans, C., Bernard, A., Lesur, O., Falmagne, P. Human bronchoalveolar lavage fluid: Twodimensional gel electrophoresis, amino acid microsequencing and identification of major proteins. Electrophoresis 1999, 20, 1634–1545.
[45] Yu Bai1, Dmitry Galetskiy, Eugen Damoc, Christian Paschen, Zhiqiang Liu, Mathias Griese, Shuying Liu and Michael Przybylski. High resolution mass spectrometric alveolar proteomics: Identification of surfactant protein SP-A and SP-D modifications in proteinosis and cystic fibrosis patients. Proteomics 2004, 4, 2300–2309.