簡易檢索 / 詳目顯示

研究生: 張詔棠
Chang, Chao-Tang
論文名稱: 有限能源額度下中央空調排程模式探討
A Scheduling Model of Air-Condition System with Limited Energy Consumptions
指導教授: 呂執中
Lyu, Jr-Jung
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 48
中文關鍵詞: 建築物能源管理中央空調排程能源額度
外文關鍵詞: Building Energy Management System, HVAC, Scheduling, Energy Consumption
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    石化能源帶來的高汙染衝擊自然生態及氣候,節約能源已成為全民共識。自1990年代起,許多研究藉由多準則決策與不確定因素決策來模擬研究商辦建築空調與舒適度的關係,儘管這類問題在學術界被熱烈討論,但是產業界卻未跟進。主要的原因為模型的參數難以取得或是模型過於複雜。若能將問題簡化使得整體模型容易被應用,在實務界推廣之後就能收到節能的效果,所以本研究探討能量消耗與作業所需時間,將問題建構為資源分配的排程議題。
    這類資源分配與排程的議題可以用動態規劃求解,不過動態規劃的計算複雜度會隨著變數增加快速成長,為了有效求解,學者們開始為這類問題找個別的應用情境並為這些情境制定演算法,以加速求解速度。在考量應用的情境後,本研究參考修正Bunde學者於2009年提出的IncMerge演算法,求解中央空調的能源排程問題,並藉由模擬和比對調整演算法,使得整體演算法更符合中央空調的使用需求,經由模擬軟體驗證排程效果,較傳統建築空調能源管理主要以時間中斷法與定時恆溫法為主更好,可以在兼顧室內舒適的情況下節省約18%的電力消耗。

    關鍵字:建築物能源管理、中央空調、排程、能源額度

    Abstract
    Fossil energy is the major source of the energy that we are using everyday. It was a good energy source, because it was cheap and convenient for using. However, it polluted the air and caused greenhouse effect. And it is not cheap any longer as we are running out of oil.
    As the price of energy raised, people put more concentration on energy efficiency especially on HVAC system. Since 1990 researchers apply multi-criteria decision making techniques on building energy management systems, they try to use less energy to maintain the in-door comfort. Unfortunately, these researches haven’t been commercialized, because of cost of data collection and complexity of model using.
    This article pursued a new concept about HVAC system control. Treat the cooling load as work load of chiller and apply a power aware scheduling algorithm to make the chiller’s work schedule. The schedule can save 18% energy consumption of HVAC system in our simulation model.

    Key words: Building Energy Manage System, HVAC, Scheduling, Energy consumption

    目錄 誌謝 I 摘要 III Abstract IV 目錄 V 圖表目錄 VIII 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 研究範圍與限制 3 第四節 研究流程 4 第二章 文獻回顧 5 第一節 能源使用與目前困境 5 2.1.1能源危機 5 2.1.2能源使用概論 6 第二節 能源管理 8 2.2.1 契約容量與需量管理 8 2.2.2 智慧型電網與建築物能源管理系統 9 2.2.3 現有能源管理模式 11 第三節 商辦建築與空調系統 12 2.3.1 空調系統用電量 12 2.3.2 商辦建築之熱源與空調負載 13 2.3.3 高效能商辦建築標準 15 第四節 有限能源預算下之排程 16 2.4.1 考慮能源消耗與作業時間的排程問題 16 2.4.2 IncMerge演算法 17 第五節 建築物能源消耗模擬軟體 18 第三章 問題描述與模式建構 20 第一節 問題描述與假設條件 20 第二節 模式說明 21 3.2.1 研究架構 21 3.2.2 參數定義 22 3.2.3 建築物模型建立 27 第四章 情境模擬 29 第一節 建築物基本情境模擬 29 第二節 排程方法導入 34 第三節 理想空調與室內溫度 39 第四節 小結 41 第五章 結論與未來研究方向 44 參考文獻 46   圖表目錄 圖1-1 研究流程圖 4 圖2-1個政策情境下能源使用比例 7 圖2-2個政策情境下油價走勢 7 圖2-3 2011年四季用電曲線圖 資料來源:台灣電力公司(2012) 9 圖2-4 IncMerge演算法求得的排程,作業時間與能量消耗的關係圖 資料來源:Bunde,2009 18 圖3 1 整體研究架構 21 圖3-2 範例排程-作業時間與能量曲線 25 圖4-1 室外溫度變化 29 圖4 2 無空調狀態之室內溫度變化 30 圖4-3 空調系統配置 31 圖4 4 一般空調室內溫度 32 圖4 5 室內熱含量 33 圖4-6 第一次排程-能量與作業時間曲線 34 圖4-7 第一次排程-室內溫度變化 35 圖4-8 第一次排程-工作處理速度 35 圖4-9第二次排程-能量與作業時間曲線-1 37 圖4-10 第二次排程-能量與作業時間曲線-2 37 圖4-11 第二次排程-室內溫度變化 38 圖4-12 第二次排程-工作處理速度-1 38 圖4-13 第二次排程-工作處理速度-2 39 圖4-14 理想空調下室內溫度變化 40 圖4-15 各情境下thermal zone 1溫度變化 42 圖4-16 個情境下thermal zone 2溫度變化 42 圖4-17 各情境下thermal zone 3溫度變化 43 表2-1電腦主機與螢幕散熱功率 13 表2-2照明設備能量輸出比率 13 表2-3 建材導熱係數 14 表2-4成年男子於不同場合不同活動之發熱功率 14 表2-5模型空調主機運作特性曲線 15 表2 6 EnergyPlus 通過驗證(U.S Department of Energy, 2013) 19 表3 1 範例排程-能源預算6之下的工作排程 26 表3 2 建築物模型參數 27 表3 3 模型建材選擇 27 表4 1 建築耗電量 33 表4-2 第一次排程-建築耗電量 36 表4-3 第二次排程-建築物耗電量 39 表4-4 理想空調建築物耗電量 40 表4-5 各情境建築耗電量 43

    參考文獻
    中文文獻:
    經濟部能源局(2001)。能源節約技術報導。
    經濟部能源局(2012)。空調節能最適溫濕度研究。
    吳青鴻.(2003). 應用於永續建築之最低能源生命週期研究. 國立雲林科技大學 機械工程系碩士論文.
    英文文獻:
    Alaboudy, A. H. K., Zeineldin, H. H., & Kirtley, J. L. (2012). Microgrid stability characterization subsequent to fault-triggered islanding incidents. Ieee Transactions on Power Delivery, 27(2), 658-669.
    ASHRAE. (2001). Air-conditioning and reftigeration system components. In ASHRAE (Ed.), ASHRAE fundamentals handbook (pp. 8.7). USA.
    ASHRAE. (2009). Standard for the design of high-performance green buildings ASHRAE (Ed.) (pp. 128).
    Bojić, Milorad, Nikolić, Novak, Nikolić, Danijela, Skerlić, Jasmina, & Miletić, Ivan. (2011). Toward a positive-net-energy residential building in Serbian conditions. Applied Energy, 88(7), 2407-2419.
    Bollen, J., Hers, S., & van der Zwaan, B. (2010). An integrated assessment of climate change, air pollution, and energy security policy. Energy Policy, 38(8), 4021-4030.
    Borgeson, Sam, & Brager, Gail. (2011). Comfort standards and variations in exceedance for mixed-mode buildings. Building Research & Information, 39(2), 118-133.
    Bunde, D. P. (2009). Power-aware scheduling for makespan and flow. Journal of Scheduling, 12(5), 489-500.
    Cao, Yanfeng, Li, Hongqiang, Dong, Wenjing, Tang, Zhihua, & Zhang, Guoqiang. (2011, 25-28 March 2011). Energy-saving performance analysis of distributional building energy system. Paper presented at the Power and Energy Engineering Conference (APPEEC), 2011 Asia-Pacific.
    Carvalho, M. M. Q., La Rovere, E. L., & Goncalves, A. C. M. (2010). Analysis of variables that influence electric energy consumption in commercial buildings in Brazil. Renewable & Sustainable Energy Reviews, 14(9), 3199-3205.
    D.C. Li , Che-Jung Chang, Chien-Chih Chen, Wen-Chih Chen. (2012). Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case. Omega, 767-773.
    David, M., Donn, M., Garde, F., & Lenoir, A. (2011). Assessment of the thermal and visual efficiency of solar shades. Building and Environment, 46(7), 1489-1496.
    Dounis, A. I., & Caraiscos, C. (2009). Advanced control systems engineering for energy and comfort management in a building environment—A review. Renewable and Sustainable Energy Reviews, 13(6-7), 1246-1261.
    Galli, S., Scaglione, A., & Wang, Z. F. (2011). For the grid and through the grid: the role of power line communications in the smart grid. Proceedings of the Ieee, 99(6), 998-1027.
    Herring, H., & Roy, R. (2007). Technological innovation, energy efficient design and the rebound effect. Technovation, 27(4), 194-203.
    Huang, J. Y., Jiang, C. W., & Xu, R. (2008). A review on distributed energy resources and MicroGrid. Renewable & Sustainable Energy Reviews, 12(9), 2472-2483.
    Jacobson, M. Z. (2009). Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science, 2(2), 148-173.
    Janiak, A. (1991). Single-machine scheduling problem with a common deadline and resource dependent release date. European Journal of Operational Research, 53(3), 317-325.
    Jones, Stoecker. (1982). Refrigeration and Air Conditioning. McGraw-Hill Series in Mechanical Engineering. 2.
    Kwok, Simon S. K., Yuen, Richard K. K., & Lee, Eric W. M. (2011). An intelligent approach to assessing the effect of building occupancy on building cooling load prediction. Building and Environment, 46(8), 1681-1690.
    Lefevre, N. (2010). Measuring the energy security implications of fossil fuel resource concentration. Energy Policy, 38(4), 1635-1644.
    Leung, M. C., Tse, Norman C. F., Lai, L. L., & Chow, T. T. (2012). The use of occupancy space electrical power demand in building cooling load prediction. Energy and Buildings, 55(0), 151-163.
    Lopez, A., Sanchez, L., Doctor, F., Hagras, H., & Callaghan, V. (2004). An evolutionary algorithm for the off-line data driven generation of fuzzy controllers for intelligent buildings. 2004 Ieee International Conference on Systems, Man & Cybernetics, Vols 1-7, 42-47.
    Marnay, C., Venkataramanan, G., Stadler, M., Siddiqui, A. S., Firestone, R., & Chandran, B. (2008). Optimal technology selection and operation of commercial-building microgrids. Ieee Transactions on Power Systems, 23(3), 975-982.
    Palensky, P., & Dietrich, D. (2011). Demand side management: demand response, intelligent energy systems, and smart loads. Ieee Transactions on Industrial Informatics, 7(3), 381-388.
    Palit, D., & Chaurey, A. (2011). Off-grid rural electrification experiences from South Asia: Status and best practices. Energy for Sustainable Development, 15(3), 266-276.
    Perez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394-398.
    Rogers-Hayden, T., Hatton, F., & Lorenzoni, I. (2011). 'Energy security' and 'climate change': Constructing UK energy discursive realities. Global Environmental Change-Human and Policy Dimensions, 21(1), 134-142.
    Rozycki, R., & Weglarz, J. (2012). Power-aware scheduling of preemptable jobs on identical parallel processors to meet deadlines. European Journal of Operational Research, 218(1), 68-75.
    S.D. Pohekar, M. Ramachandran. (2004). Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and Sustainable Energy Reviews, 8(4), 17.
    Shabtay, D., & Kaspi, M. (2006). Parallel machine scheduling with a convex resource consumption function. European Journal of Operational Research, 173(1), 92-107.
    Toledo, O. M., Oliveira, D., & Diniz, Asac. (2010). Distributed photovoltaic generation and energy storage systems: A review. Renewable & Sustainable Energy Reviews, 14(1), 506-511.
    Uckelmann, D., Harrison, M., & Michahelles, F. (2011). An Architectural Approach Towards the Future Internet of Things. Architecting the Internet of Things, 1-24.
    Yao, F., Demers, A., & Shenker, S. (1995). A scheduling model for reduced CPU energy. 36th Annual Symposium on Foundations of Computer Science, Proceedings, 374-382.
    Yao, Y., Lian, Z. W., Liu, S. Q., & Hou, Z. J. (2004). Hourly cooling load prediction by a combined forecasting model based on Analytic Hierarchy Process. International Journal of Thermal Sciences, 43(11), 1107-1118.

    網站資料:
    台灣電力公司(2012)。用電資訊揭露專區。線上檢索日期:2012年11月20日。網址: http://www.taipower.com.tw
    US Department of Energy.(2013,Feb 4). EnergyPlus Energy Simulation Software. Retrieved April 2,2013 from: http://apps1.eere.energy.gov/buildings/energyplus/ ADDIN

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE