| 研究生: |
黃植葳 Huang, Chih-Wei |
|---|---|
| 論文名稱: |
燃料電池不銹鋼雙極板之成型性與流道設計 Study on Formability and Channel Design of Stainless Steel Bipolar Plate for PEMFC |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 燃料電池、不銹鋼雙極板、沖壓、應力分析、流道設計 |
| 外文關鍵詞: | Fuel Cell, Bipolar Plates, Polymer Electrolyte Membrane Fuel Cell, Stress Analysis, Channel Design |
| 相關次數: | 點閱:149 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來在燃料電池中,雙極板決定了大部分的體積和重量,由於傳統石墨雙極板的加工費用相對較高,也大大增加了整個燃料電池組的成本。故解決電池成本和重量有重要意義。本研究旨在針對雙極板的沖壓成型參數進行成型性的有限元素摸擬分析並探討。模擬中分別改變不同的流道型式及沖壓參數,經由有限元素軟體LS-DYNA求解分析,在變薄率與回彈量間取得一個最佳值,並觀察這些參數對兩者的影響程度。接著量測沖壓後鈑件流道成型深度與預設值做誤差比較,並組裝成單電池測試性能的變化。
模擬中將改變不同的流道參數包括:流道數目、流道深度、模具倒圓角、鈑件厚度,鈑件厚度的改變對變薄率與回彈量的影響會形成相反的趨勢。由模結果可得知流道成型性主要會因流道與肋條的寬度以及流道長度有關,在9-Channel流道形式下會有最好的成形成型性與最小的回彈產生。
實驗中所量測得板件流道深度較均勻,但成型率有比較低的情形,故可改變加工製造方式來改善此現象。墊片溝槽量測中,分別用兩種量測方式下得到的結果,在Sample1下誤差最大為18.3%,實際鈑件深度差為0.109mm;Sample2下誤差最大為25%,實際鈑件深度差為0.110mm,從以上結果可知溝槽深度有不均勻的現象。
Recently, metallic bipolar plates (MBP) determines most of the volume and weight, since the conventional graphite bipolar plates are relatively high processing costs, but also greatly increase the cost of whole fuel cell stack. Therefore, to solve the cost and weight problem of fuel cell are very important. The goal of this study is to simulate the stamping process of MBP. To find out how the flow-field pattern of the flow channel and the conditions of stamping process changing affects thinning rate and springback by using finite element analysis of LS-DYNA and to get the best experiment’s parameters. In the simulation, the parameters, such as metal’s thickness, channel depth, and springback rate were changed. The best flow-field pattern of 9-Channel was found from the results. In the experimental work, two methods were used to measure channel depth after stamping processing. In sample 1, the biggest deviation is 18.3%, and the actual depth of sheet is 0.109mm. In sample 2, the biggest deviation is 25%, and the actual depth is 0.110mm.These results showed that the phenomenon of uneven depth of the channels. It also showed that changing thickness is inversely proportional to thinning rate and spring back rate, and there are better dimension of channel depth. It can be improved by changing manufacturing method.
參考文獻
[1] Alaswad, A., Baroutaji, A. and Achour, H., “Developments in Fuel Cell Technologies in the Transport Sector,” International Journal of Hydrogen Energy, 2016.
[2] http://www.toyota.com/mirai/fcv.html.2014.
[3] http://www.autonews.com/article/20071119/ANA03/711190309/tanks-are -key-to-hydrogen-economys-growth.
[4] Larminie, J. and Dicks, A., Fuel Cell Systems Explained: John Wiley & Sons Ltd, 2003.
[5] Fu, Y., Lin G. Q., Hou, M., Wu, B., Li, H. K. and Hao, L. X., “Optimized Cr-Nitride Film on 316L Stainless Steel as Proton Exchange Membrane Fuel Cell Bipolar Plate,” International Journal Hydrogen Energy, Vol.34, pp.453-458, 2009.
[6] Hermanna, A., Chaudhuria, T. and Spagnolb, P., “Bipolar Plates for PEM Fuel Cells: A Review,” International Journal of Hydrogen Energy, Vol.30, pp.1297-1302, 2005.
[7] Wang, H. and Turner, J. A., “Reviewing Metallic PEMFC Bipolar Plates. Fuel Cells,” International Journal of Hydrogen Energy, Vol.10, pp.510-519, 2010.
[8] Li, X. and Sabir, I., “Review of Bipolar Plates in PEM Fuel Cells: Flow-Field Designs,” International Journal of Hydrogen Energy, Vol.30, pp.359 -371, 2005.
[9] Bruijn, F. A., Makkus, R. C., Mallant, R. K. A. M. and Janssen, G. J. M., Chapter Five Materials for State-of-the-Art PEM Fuel Cells, and Their Suitability for Operation above 100°C. in: Zhao, T.S., Trung, K. D. K. and Van, N., editors. Advances in Fuel Cells: Elsevier Science, pp. 235-336, 2007.
[10] Antunes, R.A., Oliveira, M.C.L., Ett, G. and Ett, V., “Corrosion of Metal Bipolar Plates for PEM Fuel Cells: A Review,” International Journal of Hydrogen Energy, Vol.35, pp.3632-3647, 2010.
[11] Hornung, R. and Kappelt, G., “Bipolar Plate Materials Development Using Fe-Based Alloys for Solid Polymer Fuel Cells,” Journal of Power Sources, Vol.72, pp.20-21, 1998.
[12] Davies, D. P., Adcock, P. L., Turpin, M. and Rowen, S. J., “Stainless Steel as a Bipolar Plate Material for Solid Polymer Fuel Cells,” Journal of Power Sources, Vol.86, pp.237-242, 2000.
[13] Joseph, S., McClure, J. C., Sebastian, P. J., Moreira, D. and Valenzuela, E., “Polyaniline And Polypyrrole Coatings on Aluminum for PEM Fuel Cell Bipolar Plates,” Journal of Power Sources, Vol.177, pp.161-166, 2008.
[14] Dur, E., Cora, N. and Koc, M., “Effect of Manufacturing Conditions on the Corrosion Resistance Behavior of Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, Vol.196, pp.1235-1241, 2011.
[15] Robert, C. M., Arno, H. H. J., Frank, A. B. and Ronald, K. A. M. M., “Use of Stainless Steel for Cost Competitive Bipolar Plates in the SPFC,” Journal of Power Sources, pp.274-282, 2000.
[16] Davies, D. P., Adcock, P. L., Turpin, M. and Rowen, S. J., “Stainless Steel as a Bipolar Plate Material for Solid Polymer Fuel Cells,” Journal of Power Sources, pp.237-242, 2000.
[17] Davies, D. P., Adcock, P. L., Turpin, M. and Rowen, S. J., “Bipolar Plate Materials for Solid Polymer Fuel Cells,” Journal of Applied Electrochemistry, Vol.30, pp.101-151, 2000.
[18] Lin, K., Li, X., Sun, Y., Luo, X. and Dong, H., “Active Screen Plasma Nitriding of 316 Stainless Steel for the Application of Bipolar Plates in Proton Exchange Membrane Fuel Cells,” International Journal of Hydrogen Energy, 21470 -21479, 2014.
[19] Lee, E. K., Kim, J. K. and Kim, T. J., “Enhanced Corrosion Resistance and Fuel Cell Performance of Al1050 Bipolar Plate Coated With Tin/Ti Double Layer,” Energy Conversion and Management, pp.727-733, 2013.
[20] Hans, H., Anders, O. and Frode, S., “Carbon-Polymer Composite Coatings for PEM Fuel Cell Bipolar Plates,” International journal of hydrogen energy, pp.951-957, 2014.
[21] Antunes, R. A., Oliveira, M. C. L., Ett, G. and Ett, V., “Carbon Materials in Composite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells: a Review of The Main Challenges to Improve Electrical Performance,” Journal of Power Sources, Vol.196, pp.2945-2961, 2011.
[22] Du, L. and Jana, S. C., “Highly Conductive Epoxy/Graphite Composites for Bipolar Plates in Proton Exchange Membrane Fuel Cells,” Journal of Power Sources, Vol.172, pp.734-741, 2007.
[23] Haruki, T. and Osamu, K., “Mass Production Cost of PEM Fuel Cell by Learning Curve,” International Journal of Hydrogen Energy, pp.985-990, 2004.
[24] Li, X. and Saber, I., “Review of Bipolar Plates in PEM Fuel Cells: Flow-Field Designs,” International Journal of Hydrogen Energy, pp.359-371, 2005.
[25] Xu, Y., Peng, L., Yi, P. and Li, X., “Analysis of the Flow Distribution for Thin Stamped Bipolar Plates with Tapered Channel Shape,” International Journal of Hydrogen Energy, pp.5084-5095, 2016.
[26] Guo, N., Leu, M. C. and Koylu, U. O., “Bio-Inspired Flow Field Designs for Polymer Electrolyte Membrane Fuel Cells,” International Journal of Hydrogen Energy, pp.21185-21195, 2014.
[27] Shimpalee, D., Greenway, J. W. and Van, Z., “The Impact of Channel Path Length on PEMFC Flow-Field Design,” Journal of Power Sources, pp.398-406, 2006.
[28] Choi, K. S., Kim, H. M. and Moon, S. M., “Numerical studies on the Geometrical Characterization of Serpentine Flow-Field for Efficient PEMFC,” International Journal of Hydrogen Energy, pp.1613-1627, 2011.
[29] Hu, Q., Zhang, D. and Fu, H., “Effect of Flow-Field Dimensions on the Formability of Fe-Ni-Cr Alloy as Bipolar Plate for PEM (Proton Exchange Membrane) Fuel Cell,” International Journal of Hydrogen Energy, pp.156-163, 2015.
[30] Jin, C. K., Ja, Y. K. and Kang, C. G., “Fabrication of Stainless Steel Bipolar Plates for Fuel Cells Using Dynamic Loads for the Stamping Process and Performance Evaluation of a Single Cell,” International Journal of Hydrogen Energy, pp.21461-21469, 2014.
[31] Liu, D., Peng, L. and Lai, X., “Effect of Dimensional Error of Metallic Bipolar Plate on the GDL Pressure Distribution in The PEM Fuel Cell,” International Journal of Hydrogen Energy, pp.990-997, 2009.
[32] Lin, C. K. and Kang, C. G., “Fabrication by Vacuum Die Casting and Simulation of Aluminum Bipolar Plates with Micro-Channels on Both Sides for Proton Exchange Membrane (PEM) Fuel Cells,” International Journal of Hydrogen Energy, Vol.37, pp.1661-1676, 2012.
[33] Mahabunphachai, S., Cora, O.N. and Koc, M., “Effect of Manufacturing Processes on Formability and Surface Topography of Proton Exchange Membrane Fuel Cell Metallic Bipolar Plates,” Journal of Power Sources, Vol.195, pp.5269-5277, 2010.
[34] Jin, C. K., Jeong, M. G., Kang, C. G., “Fabrication of Titanium Bipolar Plates by Rubber Forming and Performance of Single Cell Using Tin-Coated Titanium Bipolar Plates,” International Journal of Hydrogen Energy, pp.21480-21488, 2014.
[35] Hu, Q., Zhang, D., Fu, H. and Huang, K., “Investigation of Stamping Process of Metallic Bipolar Plates in PEM Fuel Cell-Numerical Simulation and Experiments,” International Journal of Hydrogen Energy, Vol.39, pp.13770 -13776, 2014.
[36] 洪舜浩‚ “燃料電池不銹鋼雙極板之成型性與接觸阻抗之研究‚” 國立成功大學航空太空工程研究所碩士論文‚ 2015年.
[37] Hallquist, J. O. LS-DYNA® THEORY MANUAL. 7374 Las Positas Road Livermore, California 94551: Livermore Software Technology Corporation; 2006.
[38] 董福清, “應用微影方法於網格微細化之板金可成型性研究,” 國立成功大學航空太空工程學系碩士論文, 2000.
[39] Stanislav, N. A. S. and Emil, E. C. S., “Forming Limit Diagrams as an Important Indicator of Progressive High-Strength Steel Sheets Forming,” Transfer inovácií, pp.17-20, 2013.
[40] EG&G Technical Services, I., Fuel Cell Handbook (Seventh Edition), 2004.
[41] Wu, M., Lu, C. and Su, Y., “Forming Numerical Simulation of Proton Exchange Membrane Fuel Cell Metallic Bipolar Plates,” International Conference on Digital Manufacturing and Automation, ICDMA 2012, pp.426-429, 2012.
校內:2021-08-12公開