| 研究生: |
劉庭邑 Liu, Ting-Yi |
|---|---|
| 論文名稱: |
滾子鏈條之張力與運動分析及其與靜音鏈條之比較 Analysis of Tension and Motion in Roller Chain Drives and Its Comparison to Silent Chain Drives |
| 指導教授: |
黃金沺
Huang, Chin-Tien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 滾子鏈 、靜音鏈 |
| 外文關鍵詞: | roller chain, silent chain |
| 相關次數: | 點閱:80 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
滾子鏈與靜音鏈為工業界中廣泛應用於動力傳輸系統中的兩種鏈條。由於設計上的因素,兩種鏈條運動模式與鏈片受力分布不盡相同,靜音鏈在運動過程中噪音與震動較滾子鏈條來得低,應用於高負荷的傳動系統,滾子鏈則用於較低負荷傳動系統中。本文分析兩種鏈條運動與受力分布,並比較其結果的差異。
滾子鏈方面,以滾子鏈片幾何限制,找出相鄰兩滾子的接觸點位置,接著以靜力學方程式求出鏈條滾子的接觸點坐標,並利用接觸點坐標計算出鏈條緊邊張力與接觸力分布。靜音鏈方面,以齒面接觸分析法分析靜音鏈條之運動,同樣以靜力學方程式分析靜音鏈條與鏈輪接觸時張力分布。最後以同樣節距的滾子鏈片與靜音鏈片,搭配同齒數的鏈輪,並在相同量值的鏈輪扭矩下比較兩種鏈條運動時期的張力分布。
滾子鏈條是靠著鏈片滾子在鏈輪齒上作滾動接觸,藉此傳遞動力,當滾子開始與鏈輪齒接觸,滾子會保持與鏈輪接觸的關係,滾子與鏈輪齒的接觸點會隨著滾子張力與幾何條件而改變,滾子並非固定於鏈輪上,靠近緊邊鏈條的滾子,其張力與接觸力大於靠近鬆邊鏈條的滾子,此時的滾子可傳遞較大的動力。靜音鏈是靠著鏈片內緣與漸開線齒形作滑動接觸,鏈片結束運動周期後會固定於鏈輪上,靜音鏈片開始與鏈輪齒接觸到完全固定於鏈輪上期間,會經歷暫時固定期、緊邊期及懸浮期,因此與鏈輪開始接觸的鏈片,在運動過程中會因幾何限制,暫時不與鏈輪有接觸。
由滾子鏈與靜音鏈的張力分布,可發現滾子鏈運動過程中張力為連續的曲線,滾子鏈鏈片承受的拉應力變化為連續曲線。靜音鏈鏈片張力曲線為非連續曲線,因此靜音鏈運動過程中鏈片需承受突然劇烈變化的拉應力。在靜音鏈條設計上,必須由多片鏈片組成鏈節來增加強度,滾子鏈只需由兩片外鏈片與滾子組成鏈節。
Roller chains and silent chains are widely used in power transmission systems in industry. These two kinds of chains are different in both motion and force distributions. Silent chains cause less noise and vibration than roller chains do, and silent chains can be used in higher loading applications. This thesis investigates and compares the motion and force distributions of roller and silent chains.
In the study of roller chains, we first investigate geometric constraints and find out contact points between adjacent rollers. Next, we calculate the coordinates of contact points using static equilibrium equations. Finally, we use the contact point data to analyze tension and contact forces. For silent chains, tooth contact analysis is conducted to analyze the motion. We then utilize static equilibrium equations to analyze the tension forces. We also compare the tension distributions of these two kinds of chains under the same loading condition.
Roller chains deliver power through rolling contacts. The roller maintains its contact with the sprocket after engaging with the sprocket. The contact point between roller and teeth differs according to tension and geometric conditions, and the roller is not fixed to the sprocket. Those rollers closer to the tight span have bigger tension and contact forces than the rollers that are closer to the slack span; Silent chains deliver power through sliding contacts. At the end of a motion period, a link plate is fixed on sprocket. However, some link plates may temporarily have no contact with the sprocket.
According to the results provided in this thesis, the tension forces produced by roller chains are continuous curves, while those on the link plates of silent chains form discontinuous curves. As a result, silent chains need to bear more sudden tensile stress changes. Therefore, when designing a silent chain, the links must be composed of multi-link plates to increase its strength. On the other hand, roller chains only need outer layer link plates and rollers to connect the links.
1.American Chain Association, 1974, Design Manual for Roller and Silent Chain Drives, Association of Roller and Silent Chain Manufacturers, New York.
2.American Chain Association, 2006, Chains for Power Transmission and Material Handling, Taylor & Francis Group, New York.
3.Binder, R. C., 1956, Mechanics of the Roller Chain Drive, Prentice-Hall, Englewood Cliffs, New Jersey.
4.Hall, W. C., 1986, “Getting the Most from Silent Chain,” Power Transmission Design.
5.Huang, C., Kosasih, L., and Huang, C. C., 2005, “The Tooth Contact Analysis of Round-Pin Jointed Silent Chain,” Proceedings of the 2005 ASME Design Engineering Technical Conference & Computers and in Engineering Conference, DETC2005-84065.
6.Jeffrey, J. O., 1977, “Power Transmission Derive,” Patent No. 4,010,656, United States patent.
7.Kanehira, M., et al., 2001, “Silent Chain,” Patent No. 6,260,345 B1, United States patent.
8.Kolhatkar, S. C., 1996, “Rocker Joint Chain with Crescent Shape Aperture,” Patent No. 5,562,559, United States patent.
9.Kim, M. S., and Johnson, G. E., 1992a, “Mechanics of Roller Chain-Sprocket Contact: General Modelling Strategy,” DE-Vol. 43-2, International Power Transmission and Gearing Conference, Volume 2.
10.Kim, M. S., and Johnson, G. E., 1992b, “Mechanics of Roller Chain-Sprocket Contact:Observations about the Contact Phenomena and Load Distribution,” DE-Vol. 43-2, International Power Transmission and Gearing Conference, Volume 2.
11.Litvin, F. L., 1994, Gear Geometry and Applied Theory, Prentice Hall, New Jersey.
12.Litvin, F. L., 1968, Theory of Gearing, 2^ndedition, Nauka, Moscow.
13.Morse Product Catalog, United States of America, n. p., n. d..
14.Naji, M. R. and Marshek, K. M., 1982, “Analysis of Sprocket Load Distribution,” Mechanism and Machine Theory, Vol. 18, pp. 349-356.
15.Naji, M. R. and Marshek , K. M., 1983a, “Analysis of Roller Chain Sprocket Pressure Angles,” Mechanism and Machine Theory, Vol. 19, pp. 197-203.
16.Naji, M. R. and Marshek, K. M., 1983b, “Experimental Determination of the Roller Chain Load Distribution,” Journal of Mechanisms, Transmission and Automation in Design, Trans. ASME, Vol. 105, pp. 331-338.
17.Ramsey Online Product Catalog, United States of American, n. p., n. d..
18.Troedsson, I. and Vedmar, L., 1999, “A Method to Determine the Static Load Distribution in a Chain Drive,” Journal of Mechanical Design, Trans. ASME, Vol. 121, pp. 402-408.
19.黃超俊,2003,靜音鏈的嚙何分析,國立成功大學機械工程學系碩士論文。
20.劉權慶,2004,搖動銷靜音鏈的嚙何分析,國立成功大學機械工程學系碩士論文。
21.林坤泉,2005,靜音鏈條傳動誤差之探討,國立成功大學機械工程學系碩士論文。
22.吳耿彰,2005,圓柱銷靜音鏈條的受力分布與應力分析,國立成功大學機械工程學系碩士論文。
校內:2018-08-26公開