簡易檢索 / 詳目顯示

研究生: 朱永安
Chu, Yung-An
論文名稱: 試驗水槽槽壁效應對潛體阻力之影響
Study of Blockage Effect on the Submerged Body Resistance in Towing Tank
指導教授: 方銘川
Fang, Ming-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 64
中文關鍵詞: 槽壁效應阻力實驗船模試驗計算流體力學
外文關鍵詞: blockage effect, resistance test, model test, CFD
相關次數: 點閱:126下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了了解槽壁效應對於潛體模型總阻力之作用規律,本研究參考日本長崎大學之槽壁效應研究,分析在試驗水槽之阻力實驗,將在小水槽與在大水槽之阻力差值視為受槽壁效應所致的阻力增加量,並比較不同速度下大小兩水槽之阻力差異並以理論推導出槽壁校正後之阻力值。
    本研究選用DARPA(Defense Advanced Research Projects Agency)所公開發表之潛軆Suboff model 5470之裸船潛體模型為研究對象,以商用計算流體力學軟體ANSYS FLUENT進行數值模擬,先與美國David Taylor船模試驗水槽的實驗結果進行比對,以驗證計算結果的可信度。接著,等比例縮放數個潛體模型以進行模擬以求得潛體模型總阻力,同時,也計算該潛體相同速度下無窮領域之阻力。計算前亦進行網格獨立性的分析,以確定所使用的網格數量為適當,並計算相對於無窮領域時之阻力增加量以探討在不同相對面積比與福祿數(Froude Number)下,槽壁效應對潛體模型阻力之影響,而潛體之潛航深度亦納入考慮下,再進行相同分析。結果發現在相同速度下,在潛體尺寸較小時,受試驗水槽槽底之影響較大,故潛航深度較大之潛體,其模型總阻力較大;潛體尺寸較大時,受試驗水槽之自由液面影響較大,故潛航深度較小之潛體,其模型總阻力較大。
    最後,本研究將大量數據無因次化後,以相對面積比、福祿數、潛航深度比為自變數,使用統計軟體SPSS進行線性複迴歸分析,求得阻力校正係數之公式,認為考量潛航深度之三變數迴歸公式較合理,能在NCKUTT提供槽壁效應對於潛體阻力之良好校正,以期未來能作為其潛體實驗之阻力校正的參考指標。

    The main purpose of this research is to develop a blockage correction formula for submerged body by CFD method. The final objective is to establish the comprehen-sive blockage correction formulas of various submerged bodies for the NCKU tow-ing tank with respect to the section ratio, bottom clearance, submerged depth and model speed.
    Blockage Effect is widely known in the field of naval architecture. It is quite common and robust to execute model test in a towing tank to acquire ship performance in model scale and then theoretically transformed to that in full scale. However, the ship in the restricted tank performs somewhat differently from that in the open sea areas due to the confinement to flow near the ship, and the phenomenon for the submerged body is similar.
    To realize the principle of the blockage effect of submerged body in the towing tank, the present study carried out the related numerical simulations for the SUBOFF Model 5470(Bare Hull) by ANSYS FLUENT. Conditions such as section ratio of the model ship to tank, model speed, bottom clearance, and submerged depth were taken into consideration. In the end, two correction formulas was proposed to make block-age corrections for the NCKUTT experiments.
    According to the results in this research, the fact that resistance test data of the SUBOFF model in NCKUTT do need corrected was ensured, particularly in high speed range. The larger the submerged body, the more the blockage corrected incre-ment. In contrast, it shows no consistency for velocity effect among different sub-merged bodies. Generally, the free surface effect contributes the resistance increment to submerged body more than the bottom effect.

    摘要 I 誌謝 XI 目錄 XII 表目錄 XIV 圖目錄 XV 符號說明 XVII 第1章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 本文架構 4 第2章 理論與數值方法 5 2.1 控制方程式 5 2.1.1 連續方程式 5 2.1.2 動量方程式 5 2.1.3 紊流模型方程式 6 2.2 初始條件與邊界條件 10 2.3 劃分網格計算 10 2.4 建立離散方程式 10 2.5 自由液面處理方法─流體體積法 13 2.6 求解與收斂 14 第3章 槽壁效應 16 3.1 定義 16 3.2 分析方法 16 3.3 統計方法 17 3.3.1 複迴歸分析 17 3.3.2 最小平方估計方法 18 3.3.3 迴歸模型好壞之判斷──判定係數 18 第4章 計算方法之驗證 20 4.1 潛體幾何與計算流域 20 4.2 網格劃分 21 4.3 紊流模型與求解器設定 26 4.4 邊界條件 27 4.5 網格獨立性分析 28 4.6 驗證結果 29 第5章 結果分析與討論 33 5.1 在拖航水槽進行阻力試驗之數值模擬 33 5.2 不同相對面積比下槽壁效應對潛體阻力之影響 35 5.3 不同潛航深度下槽壁效應對潛體阻力之影響 39 5.4 迴歸分析應用於校正試驗水槽之阻力值 42 第6章 結論與未來展望 50 參考文獻 51 附錄 1 58 附錄 2 59 附錄 3 62 附錄 4 63

    [1] ANSYS FLUENT User’ s Guide: ANSYS, Inc., 2010
    [2] B.E. Launder, D.B. Spalding, “Lectures in Mathematical Models of Turbulence,” Academic Press, London, 1972.
    [3] Comstock, J.P. and Hancock, C.H., The Effect of Size of Towing Tank on Model Resistance, Transactions of S.N.A. & M.E. Vol. 50 (1942)
    [4] Conn, J.F.C., Lackenby, H. and Walker, W.P., Resistance Experiments on "Lucy Ashton”, Transactions of I.N.A. (1953)
    [5] Crook L.B.(1990)Resistance For DARPA Suboff as Represented by Model 5470, DTRC/SHD-1298-07
    [6] Emerson, A., Ship Model Size and Tank Boundary Correction, Transactions of N.E.C.I. (1959)
    [7] Graff, W., Untersuchungen Uber die Zunahme Zahigkeitswiderstandes auf flachen Wasser, Report No. 85 of Versuchsanstalt fur Binnenschiffbau, Duisburg (1967)
    [8] Gross, A. and Watanabe, K., On Blockage Correction, 13th ITTC, Report of Per-formance Committee, Appendix (1972)
    [9] Groves, N.C.; Huang, T.T.; Chang, M.S. (1989) Geometric Characteristcs of Darpa Suboff Models, DTRC/SHD-1298-01
    [10] H.K. Versteeg, W. Malalasekera, “An Introduction to Computational Fluid Dy-namics: The Finite Volume Method,” Wiley, New York, 1955.
    [11] Haase M, Davidson G, Binns J, Thomas G, Bose N. “Full-Scale Resistance Pre-diction in Finite Waters-A Study Using CFD Simulations, Model Test Experiments and Sea Trial Measurements” Proceedings of the Institution of Mechanical Engi-neers Part M Journal of Engineering for the Maritime Environment, April 2016.
    [12] Hiraga, Y., Experimental Investigations on the Frictional Resistance of Planks and Ships-models, Journal of S.N.A of Japan No. 55 (1934)
    [13] Hughes, G., Tank Boundary Effect on Model Resistance, Transactions of I.N.A. Vol. 103 (1961)
    [14] Hughes, G., The Effect of Model and Tank Size in Two Series of Resistance Tests, Transactions of I.N .A. (1957)
    [15] ITTC. Recommended Procedures and Guidelines, Practical Guidelines for Ship CFD Simulations, Technical report 7.5-03-02-03. Revision 01., p.2 , 26th Interna-tional Towing Tank Conference, 2011.
    [16] J.P. Van Doormal, C.G. Raithby, “Enhancement of the Dam Break Problem and Impact Flows Using a Navier-Stokes Solver,” 15th Australian Fluid Mechanics Conference, Sydney, Australia 13-17., 2004.
    [17] K. Taniguchi and K. Tamura “On the Blockage Effect” Experimental Tank, Mitsubishi Ship-building and Engineering Co. Report No. 307 (1958)
    [18] K. Taniguchi and K. Tamura “Study of the Tank Boundary Effect on Model Re-sistance” (in Japanese) Journal of S.N.A of West Japan No. 9 (1955-5)
    [19] Kim, H.C., Blockage Correction in a Ship Model Towing Tank, Report of ORA Project 04542, Univ. of Michigan (1963)
    [20] Kreitner, J., Uber den Schiffs- widerstand und beschrankten Wasser, Werft, Reederei, Hafen (1934)
    [21] Krey, H., Fahrt der Schiffe auf beschrankten Wasser, Zeitschrift Schiffbau (1913)
    [22] Lamb, H., On the Effect of the Walls of an Experimental Tank on the Resistance of Model, British A.R.C. R & M No. 1010 (1926)
    [23] Landweber, L. and Nakayama, A., Effect of Tank Walls on Ship-Model Re-sistance, 14th ITTC, Report of Resistance Committee, Appendix 6 (1975)
    [24] Landweber, L., Tests of a Model in Restricted Channels, TMB-Report 460 (1939)
    [25] Liu, H.L.; Huang, T.T. (1998) Summary of DARPA Suboff Experimental Pro-gram Data, CRDKNSWC/HD-1298-11
    [26] Lock, M., The Influence of a Wind-Tunnel on a Symmetrical Body, British A.R.C. R & M No. 1275 (1929)
    [27] Moonesun,M. and Korol,Y.M., (2015), Minimum Immersion Depth for Eliminat-ingFree Surface Effect on Submerged Submarine Resistance, Turkish Journal of Engineering, Science and Technology (TUJEST), vol.3, No.1, pp.36-46.
    [28] Ogiwara, S., A Calculation on Blockage Effect (in Japanese), Journal of the Kan-sai Society of N.A., Japan No. 157 (1975)
    [29] Pien, P.C., The Application of Wave Resistance Theory to the Design of Ship Hulls with Low Total Resistance, 5th Symposium on Naval Hydrodynamics, Bergen (1964)
    [30] S.V. Patanker and D.B. Splading, “A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int J Heat Mass Tranfer, vol. 15, pp. 1787-1806, 1972.
    [31] Schlichting, O., Schiffswiderstand auf beschrankten Wassert, Jahrbuch der Schiff-bautechnischen Gesellschaft (1934)
    [32] Schuster, S., Beitrag zur Frage der Kanalkorrektur bei Modellversuchen, Schiff-bautec}mik (1955/56)
    [33] Scott, J.R., A Blockage Corrector, Transactions of I.N .A. Vol. 108 (1966)
    [34] Scott, J.R., On Blockage Correction and Extrapolation to Smooth Ship Resistance, Transactions of S.N.A. & M.E. (1970)
    [35] Scott, JR., Blockage Correction At Sub-Critical Speed, Transactions of T.N.A. Vol. 118 (1976)
    [36] Scott, JR., On Blockage Corrector, Presented to the ITTC Performance Committee Meeting, March (1971)
    [37] Tamura, K., Blockage Correction, 14th ITTC, Contribution to the Resistance Ses-sion (1975)
    [38] Tamura, K., Resistance Tests in Shallow Water on a Variety of Ship Models, Transactions of the West Japan Society of N.A. No. 78 (1989)
    [39] Tamura, K., Study on the Blockage Correction, Journal of S.N .A. of Japan No. 131 (1972)
    [40] Tamura, K., Study on the Blockage Effect of a Ship Model (in Japanese), Mitsubishi Technical Review Vol. 9 No. 5, Sept. (1972)
    [41] Taniguchi, K. and Tamura, K., On the Blockage Effect, Mitsubishi Experimental Tank Report No. 307 (1958)
    [42] Taniguchi, K. and Tamura, K., Study on the Tank Boundary Effect on Model Re-sistance (in Japanese), Transactions of the West Japan Society of N.A. No. 9 (1955)
    [43] Telfer, E.V., Ship Model Correlation and Tank Wall-Effect, Transactions of N.E.C.I. (1953)
    [44] Tezdogan, T, Incecik, A., Turan, O., A Numerical Investigation of the Squat and resistance of ships advancing through a canal using CFD, Journal of Marine Sci-ence and Technology [0948-4280] (2016) 21:86 -101
    [45] Van Lammeren, W.P.A., Troost, L. and Koning, JG., Resistance, Populsion and Steering of Ships, The Technical Publishing Co. Haarlem, Holland (1948)
    [46] Van Lammeren, W.P.A., van Manen, J.D. and Lap, A.J.W., Scale Effect Experi-ments on Victory Ships and Models, Transactions of I.N.A. (1955)
    [47] Vu3an Manen, J.D. and van Lammern, W.P.A., Model and Ship Trials in Shallow Water, Transactions of S.N.A. & M.E. (1956)
    [48] Yamagata, M., Consideration on the Effect of the Side-walls of an Experiment Tank upon the Resistance of a Model (in Japanese), Journal of S.N.A of Japan No. 48 (1931)
    [49] Young, A.D. and Squire, H.B., Blockage Correction in a Closed Rectangular Tunnel, British A.RC. R & M No. 1984 (1942)
    [50]  王福軍,計算流體動力學分析-CFD軟件原理與應用,北京:清華大學出版社,2004.
    [51]  黃以丞,「後插式Suboff潛艦模型設計以及阻力試驗技術的確立」,國立成功大學系統及船舶機電工程學系碩士論文,2017
    [52]  郭春雨、闞梓、趙大剛、吳鐵成,計及船體姿態變化的水池阻塞效應數值研究,哈爾濱工程大學學報,2016,37(12):1619-1624

    無法下載圖示 校內:2022-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE