簡易檢索 / 詳目顯示

研究生: 劉健豪
Lao, Kin-Hou
論文名稱: 摻鐵之鉍銅硒氧塊材及薄膜的合成和性質之研究
Synthesis and characterization of Fe-doped BiCuSeO bulks and thin films
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 68
中文關鍵詞: 鉍銅硒氧鐵摻雜射頻磁控濺鍍磊晶成長
外文關鍵詞: BiCuSeO, Fe doping, RF magnetron sputtering system, epitaxy
相關次數: 點閱:107下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目標為探討鐵摻雜對於鉍銅硒氧塊材的物理性質影響以及希望可以經由射頻磁控濺鍍系統在(001)鈦酸鍶單晶基板上成長出具有高熱穩定性及高化學穩定性的鐵摻雜鉍銅硒氧磊晶薄膜。
    本實驗室曾經以射頻磁控濺鍍法成功在(001)鈦酸鍶基單晶基板上磊晶成長鉍銅硒氧以作底電極之用,但由於鉍銅鍶氧中的鉍元素跟鍶元素有較高的蒸氣壓會容易揮發導致鉍銅鍶氧在高溫環境會分解,以及在後續濺鍍功能性氧化物鐵酸鉍時會與鐵酸鉍層發生反應並且分解。有見及此,參考本實驗室以往在鐵硒超導體中,鐵的加入可以和硒產生鍵結並有效抑制硒的揮發。故希望鐵摻雜可以有效改善鉍銅硒氧中硒元素的揮發以提高鉍銅硒氧的熱穩定性及化學穩定性,從而在更高的基板溫度下磊晶成長鉍銅硒氧薄膜。
    本實驗使用固相燒結法制備磁控濺鍍用之靶材,並且對其作結構,成分,電性,以及熱重分析。XRD結果顯示鐵摻雜到5%為止都没有偵測到有二次相的生成而且成份都没有明顯的偏離,而其席貝克系數反映出隨著鐵摻雜濃度上升,鉍銅硒氧的濃度會隨之上升。在薄膜成長方面,本實驗使用鐵摻雜量為1% 的鉍銅硒氧作為濺鍍用的靶材並利用檔板的設置以降低有效鍍率並在基板溫度為450C 下濺鍍30分鐘可以成功磊晶成長鉍銅硒氧於(001)鈦酸鍶單晶基板上。磊晶鉍銅鍶氧薄膜的載子濃度為4.99×1020/cm3, 指出摻鐵後的磊晶鉍銅鍶氧薄膜為p-型半導體。

    The goal of this research is to investigate the influence of Fe doping on the thermal stability and epitaxial film growth of BiCuSeO via RF magnetron sputtering system. Bi-CuSeO has the tetragonal crystal structure with the space group of P4/nmm and the lattice parameters of a=b=3.9273 and c=8.9293. Although this material has been studied inten-sively for thermoelectric application, the current work is intended to develop it as a bot-tom electrode on the popular substrate SrTiO3 because of the small lattice misfit. There were two main parts in this research. In the first part, the influence of Fe doping in Bi-CuSeO was investigated using the bulk samples synthesized by sintering in flowing Ar atmosphere, in order to decide the optimal Fe concentration for the sputtering target. The phase purity of variously doped samples was examined by X-ray diffraction (XRD). The morphology and composition were studied by scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS). The thermal stability was char-acterized by thermogravimetric analysis (TGA). The Seebeck coefficient and electric conductivity were measured to confirm that they were not degraded significantly by the Fe doping. For the second part, the focus of the study was on the growth, structural analy-sis and electric properties of epitaxial thin films of the Fe-doped BiCuSeO. After a series of experiments with varied substrate temperatures, BiCuSeO:1%Fe epitaxial films were successfully grown on (001) SrTiO3 substrates at 450 C. High precision XRD measure-ments showed that the epitaxial films had a out-of-plane texture of 0.61 and in-plane texture of 2. SEM showed that the films were dense with a smooth surface suitable for subsequent film growth. Hall-effect measurements indicated that the Fe doped films kept the same p-type conductivity as the pristine BiCuSeO with the carrier concentration being 4.99×1020/cm3 at room temperature, which may be high enough as the bottom electrode.

    Contents 摘要 I ABSTRACT II 致謝 III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES X CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 CHAPTER 2 LITERATURE REVIEW 5 2.1 Structure of BiCuSeO 5 2.2 Physical properties of BiCuSeO 7 2.3 Chemical and Thermal Stability of BiCuSeO 8 2.4 Fabrication of BiCuSeO bulk sample 10 2.5 Growth of BiCuSeO thin films 11 CHAPTER 3 EXPERIMENTAL 15 3.1 Experimental Procedures 15 3.1.1 Bulk and Sputtering target preparation 16 3.1.2 Substrates preparation 18 3.1.3 Deposited BiCuSeO films via RF magnetron sputtering system 19 3.1.3.1 Magnetron Sputtering Deposition 20 3.1.3.2 Epitaxy[36] 22 3.2 Materials and Chemicals 24 3.3 Characterization 25 3.3.1 X-Ray Diffractometer (XRD) 25 3.3.2 Scanning Electron Microscopy (SEM) 27 3.3.3 Hall Measurement System 29 3.3.4 Thermogravimetric analysis (TGA) 31 CHAPTER 4 RESULTS AND DISCUSSION 32 4.1 Characterization of the BiCuSeO: x%Fe (x=0, 0.01, 0.05, 0.1) bulk samples 32 4.1.1 Effect of Fe doping on crystal structure of BiCuSeO 32 4.1.1.1 Re-sintering of the Fe-doped BiCuSeO 36 4.1.2 Appearance of the sintered BiCuSeO: x%Fe samples 38 4.1.2.1 Appearance of the re-sintered BiCuSeO: x%Fe samples 41 4.1.3 Conductive properties 44 4.1.4 Seebeck coefficient measurement 46 4.1.5 Thermogravimetric analysis 49 4.2 Synthesis and characterization of BiCuSeO: 1%Fe thin film 51 4.2.1 Composition of BiCuSeO: 1%Fe film at different substrate temperature 51 4.2.2 BiCuSeO: 1%Fe grown on STO(001) substrate 53 4.2.2.1 BiCuSeO: 1%Fe films grown under substrate temperature of 500C 53 4.2.2.2 BiCuSeO: 1%Fe films grown under substrate temperature of 450C 56 CHAPTER 5 CONCLUSIONS 62 REFERENCES 64

    [1] B. Allouche, Y. Gagou, F. Le Marrec, M.-A. Fremy, M. El Marssi, 'Bipolar resistive switching and substrate effect in GdK2Nb5O15 epitaxial thin films with tetragonal tungsten bronze type structure', Materials and Design, vol.112 (2016) 80–87.
    [2] K. Tahmasebi, A. Barzegar, J. Ding, T.S. Herng, A. Huang, S. Shannigrahi, 'Magnetoelectric effect in Pb(Zr0.95Ti0.05)O3 and CoFe2O4 heteroepitaxial thin film composite', Materials and Design, vol. 32 (2011) 2370–2373.
    [3] S.P. Alpay, V. Nagarajan, L.A. Bendersky, M.D. Vaudin, S. Aggarwal, R. Ramesh, A.L. 'Roytburd, Effect of the electrode layer on the polydomain structure of epitaxial PbZr0.2Ti0.8O3 thin films', Journal of Applied Physics, vol. 85 (1999) 3271–3277.
    [4] J.M. Song, L.H. Luo, X.H. Dai, A.Y. Song, Y. Zhou, Z.N. Li, J.T. Liang, B.T. Liu, 'Switching properties of epitaxial La0.5Sr0.5CoO3 / Na0.5Bi0.5TiO3 / La0.5Sr0.5CoO3 ferroelectric capacitor', RSC Advances, vol. 8 (2018) 4372–4376.
    [5] H.Y. Lee, C.H. Hsu, Y.W. Hsieh, Y.H. Chen, Y.C. Liang, T.B. Wu, L.J. Chou, 'Preparation of heteroepitaxial LaNiO3 thin films on a SrTiO3 substrate for growing an artificial superlattice with RF sputtering', Materials Chemistry and Physics, vol. 92 (2005) 585–590.
    [6] T. Yu, Y.F. Chen, Z.G. Liu, S.B. Xiong, L. Sun, X.Y. Chen, L.J. Shi, N.B. Ming, 'Epitaxial Pb(Zr0.53Ti0.47)O3/LaNiO3 heterostructures on single crystal substrates', Applied Physics Letter, vol. 69 (1996) 2092–2094.
    [7] C.Y. Guo, X. Qi, 'RF magnetron sputter deposition and electrical properties of La and Y doped SrTiO3 epitaxial films', Materials and Design, vol. 179 (2019), 107888
    [8] W. Siemons, G. Koster, A. Vailionis, H. Yamamoto, D.H.A. Blank, M.R. Beasley, 'Dependence of the electronic structure of SrRuO3 and its degree of correlation on cation off-stoichiometry', Physics Review, B 76 (2007), 075126.
    [9] S. Madhukar, S. Aggarwal, A.M. Dhote, R. Ramesh, A. Krishnan, D. Keeble, E. Poindexter, 'Effect of oxygen stoichiometry on the electrical properties of La0.5Sr0.5CoO3 electrodes', Journal of Applied Physics, vol. 81 (1997) 3543–3547.
    [10] L. Qiao, X. Bi, 'Direct observation of Ni3+ and Ni2+ in correlated LaNiO3−δ films', EPL 93 (2011), 57002.
    [11] 林蔚叡, 博士論文, '以鐵酸鉍複鐵式材料為釘札層製作全氧化物自旋閥之研究', 成功大學材料科學及工程學系 (2014).
    [12] 羅易平, 碩士論文, '鉍銅硒氧薄膜製備及結構分析', 成功大學材料科學及工程學系 (2017).
    [13] 黃美靜, 碩士論文, '射頻磁控濺鍍法成長鉍銅硒氧磊晶薄膜', 成功大學材料科學及工程學系 (2018).
    [14] 洪綮嶸, 碩士論文, '利用固相燒結法製備FeSe 及其超導性之研究', 成功大學材料科學及工程學系 (2009)
    [15] A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V. A. Dolgikh, and B. A. Popovkin, 'New Layered Compounds with the General Composition (Mo) (Cuse), Where M=Bi, Nd, Gd, Dy, and BiOCuS - Syntheses and Crystal-Structure', Journal of Solid State Chemistry, 112 (1994), 189-191.
    [16] A. P. Richard, J. A. Russell, A. Zakutayev, L. N. Zakharov, D. A. Keszler, and J. Tate, 'Synthesis, Structure, and Optical Properties of BiCuOCh (Ch=S, Se, and Te)', Journal of Solid State Chemistry, 187 (2012), 15-19.
    [17] L. D. Zhao, J. Q. He, D. Berardan, Y. H. Lin, J. F. Li, C. W. Nan, and N. Dragoe, 'BiCuSeO Oxyselenides: New Promising Thermoelectric Materials', Energy & Environmental Science, 7 (2014), 2900-2924.
    [18] Y. Liu, L.-D. Zhao, Y. Zhu, Y. Liu, F. Li, M. Yu, D.-B. Liu, W. Xu, Y.-H. Lin, and C.-W. Nan, "Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO via a Dual-Doping Approach," Advanced Energy Materials, vol. 6, p.9, 2016.
    [19] J. Suia, J. Lia, J. He, Y. L. Peic, D. Berardand, H. Wue, N. Dragoed, W. Caia and L. D. Zhao, 'Texturation Boosts the Thermoelectric Performance of BiCuSeO Oxyselenides', Energy & Environmental Science, 6 (2013), 2916-2920.
    [20] C.L.Hsiao, X.Qi, 'The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides',Acta Materialia,102 (2016), 88-96.
    [21] C. Barreteau, David Berardan, N. Dragoe, 'Studies on the thermal stability of BiCuSeO',Journal of Solid State Chemistry,222 (2015), 53-59.
    [22] J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He, and L.-D. Zhao, "A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides," Energy & Environmental Science, vol. 5, p. 5, 2012.
    [23] L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. Pinsard-Gaudart, and N. Dragoe, "Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials," Applied Phys-ics Letters, vol. 97, p.3, 2010.
    [24] Y. Liu, L.-D. Zhao, Y. Liu, J. Lan, W. Xu, F. Li, B.-P. Zhang, D. Berardan, N. Dragoe, Y.-H. Lin, C.-W. Nan, J.-F. Li, and H. Zhu, "Remarkable Enhancement in Thermoelectric Performance of BiCuSeO by Cu Deficiencies," American Chemical Society, vol. 133, p.4, 2011.
    [25] A. Bhaskar, R.T. Lai, K.C. Chang, C.J. Liu, 'High thermoelectric performance of BiCuSeO prepared by solid statereaction and sol-gel process', Scripta Materialia, vol. 134 (2017), 100-104
    [26] J. Wu, F. Li, T.R. Wei, Z. Ge, F. Kang, J. He, J.F. Li, 'Mechanical Alloying and Spark Plasma Sintering of BiCuSeO Oxyselenide: Synthesis Process and Thermoelectric Properties', Journal of the American Ceramic Society, vol. 99 (2016), 507-514.
    [27] H. Zhua, T. Sub, H. Lic, C. Pud, D. Zhoud, P. Zhua, X. Wang, 'High pressure syn-thesis, structure and thermoelectric properties of BiCuChO(Ch=S,Se,Te)', Journal of the European Ceramic Society, vol. 37 (2017) 1541–1546
    [28] F. Li, T.R. Wei, F. Kang, J.F. Li, "Thermal stability and oxidation resistance of Bi-CuSeO based thermoelectric ceramics", Journal of Alloys and Compounds, vol. 614 (2014), 394-400.
    [29] T. Sato, H. Kohri, T. Yagasaki, "Thermoelectric Properties and Thermal Stability of BiCuSeO", Journal of Electronic Materials, vol. 45 (2016), 5521-5525.
    [30] J. Tate, P.F. Newhouse, R. Kykyneshi, P.A. Hersh, J. Kinney, D.H. McIntyre, D.A. Keszler, "Chalcogen-based transparent conductors", Thin Solid Films, vol. 516 (2008), 5795-5799.
    [31] A. Zakutayev, P. F. Newhouse, R. Kykyneshi, P. A. Hersh, D. A. Keszler, and J. Tate, 'Pulsed Laser Deposition of BiCuOSe Thin Films', Applied Physics a-Materials Science & Processing, 102 (2011), 485-92.
    [32] X. L. Wu, J. L. Wang, H. R. Zhang, S. F. Wang, S. J. Zhai, Y. G. Li, D. Elhadj, and G. S. Fu, 'Epitaxial Growth and Thermoelectric Properties of c-axis Oriented Bi1-xPbxCuSeO Single Crystalline Thin Films', Crystengcomm, 17 (2015), 8697-8702.
    [33] D. Yuan, S. Guo, S. Hou, Y. Ma, J. Wang, S. Wang, 'Enhanced Thermoelectric Performance of c-Axis-Oriental Epitaxial Ba-Doped BiCuSeO Thin Films', Nanoscale Research Letters, (2018), 13:382
    [34] M. Ishizawa, H. Fujishiro, T. Naito, A. Ito, T. Goto, 'Crystal orientation, crystallinity, and thermoelectric properties of Bi0.9Sr0.1CuSeO epitaxial films grown by pulsed laser deposition', Japanese Journal of Applied Physics, vol. 57 (2018), 025502
    [35] X. Wu, L. Gao, P. Roussel, E. Dogheche, J. Wang, G. Fu, S. Wang, 'Growth of c-Axis-Oriented BiCuSeO Thin Films Directly on Si Wafers', The American Ceramic Society, vol. 99 (2016), 3367-3370.
    [36] Milton Ohring, 'Materials Science of Thin Films', Academic Press Inc (1992), 307-354

    無法下載圖示 校內:2024-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE