簡易檢索 / 詳目顯示

研究生: 林昀澤
Lin, Yun-Tse
論文名稱: 不同交聯度之膠態電解質之合成鑑定在鋰電池之應用
Synthesis and Behavior of Cross-Linked Gel Polymer Electrolytes in Various Degrees for Lithium Batteries
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 原位聚合聚醚高分子膠態高分子電解質鋰電池
外文關鍵詞: In-situ polymerization, Polyether, Gel polymer electrolytes, Lithium battery
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要係利用三種不同分子量之聚醚交聯劑,分別混摻高分子前驅物與商用電解液之三種系統於鋰金屬電池中引發原位自由基聚合,以應用於膠態高分子電解質之研究,並分別按照基材分子量: 600、900、2000,命名為GPT600、GPT900、GPT2000。利用拉曼光譜儀及固態核磁共振儀確認各系統與鋰離子作用之聚醚基對鋰鹽解離能力之影響,與藉由改變基材的鏈長度,如何改變鋰離子的移動性;在熱差微分掃描分析儀中探討高分子基材的熱穩定性。離子傳導度在各組成的範圍介於 6.0×10-3 to 1.2×10-2 S cm-1,在50 ℃時可接近液態電解質的1.0×10-2 S cm-1。此外,隨聚醚鏈長的增加穩定電位窗可達一般液態電解質的5.0 V。於鋰電池循環壽命測試中發現,在4 C快速充放電速率下,三種系統的庫倫效率皆維持於99 %以上,GPT600系統在第100圈時並未顯著電容衰退而一般電解液的電容衰退率在第100圈後則非常大。經由SEM影像觀察充放電後鋰金屬表面與截面,相較一般液態電解質的SEI層厚並且較多裂縫,使用本研究之膠態電解質則於鋰金屬表面較無上述問題產生,並且發現系統的基材鏈長度越短,其在鋰金屬上的SEI層相對平坦且薄。由以上所述可歸納本研究所製備膠態高分子電解質可以應用於鋰電池中,並且得到聚醚高分子的鏈長度與鋰電池系統間的關係。

    The gel polymer electrolytes were prepared by different length of crosslinkers, polymer precursors, and commercial liquid electrolytes via in-situ free radical polymerization in lithium metal batteries. In this study, the gel polymer electrolytes contain various crosslinkers of 600, 900, and 2000 molecular weight, which are named GPT600、GPT900、GPT2000, respectively. Raman spectrameter and 7Li magic-angle spinning NMR elucidate the interactions between lithium ions and poly( ethylene oxide ) for various systems, which indicates degree of crosslinking affects the mobility of matrix polymer backbones. Differential scanning calorimetry was used to study the behavior of thermal stability of gel polymer electrolytes. Gel polymer electrolytes not only provide mechanical strength but also have good ionic conductivity. The ionic conductivity of gel polymer electrolytes for each system ranges from 6.0×10-3 to 1.2×10-2 S cm-1 and also achieves nearly 1.0×10-2 S cm-1 at 50 ℃, which is closed to that of the liquid electrolyte. Further, electrochemical windows were obtained by LSV method presenting the LSV curves of gel polymers are roughly 5.0 V, which is notably closed to that of the liquid electrolyte. On the other hand, cycling performance at 4 C demonstrates a reversible cycling process for three systems and keeps the coulombic efficiency above 99 %. GPT600 exhibited a remarkable improved cycling performance after 100 cycles compared to that of the cell with the liquid electrolyte after 100 cycles. We observed the surface of the Li anode obtained from the cells after 100 cycles at 4 C. In a contrast, gel polymer electrolytes feature a compact and smooth SEI layer but the liquid electrolyte forms an inhomogeneous layer with crack. Especially, GPT600 and GPT900, higher degree of crosslinking, indicate a stable and thin layer with low resistance upon cycling.
    All the above-mentioned properties indicate that the cross-linked polymer electrolytes can be a promising candidate for lithium metal batteries.

    目錄 摘要 I ABSTRACT II 誌謝 XIV 目錄 XV 圖目錄 XVII 表目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 鋰電池簡介 2 1.3 鋰金屬電池 3 1.4 研究動機 5 第二章 文獻回顧 6 2.1 鋰離子電池基本工作原理 6 2.2 電解質 7 2.3 高分子電解質 8 2.3.1 固態高分子電解質 ( Solid Polymer Electrolyte, SPE ) 10 2.3.2 複合性高分子電解質( Composite Polymer Electrolyte, CPE ) 12 2.3.3 膠態高分子電解質 ( Gel Polymer Electrolyte, GPE ) 13 2.4 膠態電解質的傳導機制 17 第三章 實驗 20 3.1 實驗藥品與材料 20 3.2 實驗儀器與設備 20 3.3 樣品製備 22 3.3.1 合成SDMA 22 3.3.2 AIBN之純化 22 3.3.3 配製高分子混合溶液 22 3.4 鋰電池之製備與組裝 24 3.4.1 製備磷酸鋰鐵正極 24 3.4.2 鈕扣型電池組裝 24 3.5 材料性質分析與鑑定 25 3.5.1 傅立葉轉換紅外線光譜儀 ( FT-IR ) 25 3.5.2 熱重分析儀 ( TGA ) 25 3.5.3 示差式掃描熱量分析儀 ( DSC ) 25 3.5.4 掃描式電子顯微鏡 ( SEM ) 26 3.5.5 液態核磁共振光譜分析 ( NMR ) 26 3.5.6 固態核磁共振光譜分析 ( Solid NMR ) 27 3.5.7 拉曼光譜分析 ( Raman Spectrum ) 27 3.5.8 流變分析 ( Rheometer ) 28 3.6 電化學測試 28 3.6.1 線性掃描伏安法 28 3.6.2 電化學阻抗頻譜法 ( EIS ) 29 3.6.3 離子傳導度 31 3.6.4 電池充放電能力測試 32 3.6.5 電池循環壽命測試 32 3.6.6 對稱鋰金屬時效穩定性 32 3.6.7 對稱鋰金屬電池循環壽命恆穩性測試 32 3.7 實驗流程 33 第四章 膠態電解質實驗結果與討論 34 4.1 高分子與交聯高分子之鑑定 34 4.1.1 高分子之鑑定 34 4.1.2 交聯高分子之鑑定 35 4.2 熱重分析 36 4.3 示差式掃描熱量分析 37 4.4 流變分析 39 4.5 線性掃描伏安法之電化學穩定性分析 39 4.6 拉曼圖譜分析 40 4.7 7LI固態核磁共振光譜分析 43 4.8 離子傳導度分析 44 4.9 鋰金屬電池充放電效能測試 45 4.10 對稱鋰金屬電池時效穩定性分析 48 4.11 鋰金屬電池充放電圈數之電化學阻抗分析 50 4.12 鋰金屬電池循環充放電測試 51 4.13 對稱鋰金屬電池循環穩定性測試 54 4.14 SEM鋰電極表面與截面分析 56 第五章 結論 59 第六章 參考 I 圖目錄 圖1-1鋰離子電池與其他電池之能量密度 2 圖1-2鋰電池演進 3 圖1-3循環充放電間電極表面變化 4 圖2-1鋰離子電池工作原理示意圖 6 圖2-2鋰離子電池常用有機添加劑與鋰鹽 8 圖2-3各類型電解質的優缺點比較 9 圖2-4 鋰離子於PEO中傳導機制 11 圖2-5複合性高分子電解質中無機物含量的演進 12 圖2-6離子化合物與離子液體示意圖 16 圖2-7 鋰離子在液態電解質與膠態電解質的環境變化 19 圖3-1 高分子溶液組成與電池結構示意圖 23 圖3-2 網狀膠態電解質結構示意圖 24 圖3-3 CR2032鈕扣型電池組裝圖 25 圖3-4 光射散三種途徑之示意圖 28 圖3-5 RC並聯阻抗圖 29 圖3-6 鋰離子於活性物質之傳遞機制 31 圖3-7 鋰電池等效電路模型圖 31 圖4-1 SDMA反應前後之FT-IR圖譜 34 圖4-2(A) PEGMEMA、(B) SDMA、(C) CURED高分子之FT-IR圖譜 35 圖4-3含電解液之膠態電解質之TGA圖 36 圖4-4 (A) SDMA基材、(B)含電解液之膠態電解質之DSC升溫圖 38 圖4-5 (A) 膠態電解質G’與G”測量曲線、(B)膠態電解質之複變黏度曲線 39 圖4-6 膠態高分子電解質與液態電解質之電化學穩定性 40 圖4-7 (A)膠態電解質拉曼光譜3000 CM-1~500 CM-1、(B)電解液、(C) GPT2000、(D) GPT900、(E) GPT600在700~760 CM-1之適套曲線; (F)電解液、(G) GPT2000、(H) GPT900、(I) GPT600在865~920 CM-1之適套曲線 42 圖4-8 (A) 化學位移與鋰離子環境間的關係、(B) 膠態電解質7LI NMR峰 44 圖4-9 膠態電解質與液態電解質離子傳導度圖 45 圖4-10 液態與膠態電解質之充放電效能圖 48 圖4-11 (A)液態電解質、(B)GPT2000、(C)GPT900、(D)GPT600時效穩定圖 49 圖4-12電荷轉移阻抗隨時間變化之比較 50 圖4-13 (A)液態電解質、(B)GPT2000、(C)GPT900、(D)GPT600之充放電圈數阻抗圖 51 圖4-14 (A)液態電解質、(B) GPT2000、(C) GPT900、(D) GPT600之0.5 C長效圖 52 圖4-15 (A)液態電解質、(B) GPT2000、(C) GPT900、(D) GPT600之 4C長效圖 53 圖4-16 (A) 0.5 C長效測試疊圖、(B) 4 C長效測試疊圖 53 圖4-17 (A) 電流密度0.5 MACM-2與(B) 2.0 MACM-2下液態電解質與膠態電解質 55 圖4-18 分別為(A)、(B) 原鋰金屬; (C)、(D) 液態電解液;(E)、(F) GPT2000; (G)、(H) GPT900; (I)、(J) GPT600經充放電之鋰金屬表面與截面 58 圖4-19巨觀下經充放電後之鋰金屬表面樣貌(左至右依序為LE、GPT2000、GPT900、GPT600 ) 58   表目錄 表2-1 鋰電池中常用電解液之特性 15 表2-2離子液體性質特性比較表 16 表3-1 樣品命名表 23 表4-1 FT-IR特徵峰位置與官能基運動 35 表4-2電解液損失速率 37 表4-3 各系統拉曼訊號面積比值 43 表4-4液態電解質與膠態電解質放電電容維持率(相對0.1C ) 48 表4-5不同充放電圈數之阻抗值 51

    1 Tarascon, J.-M. & Armand, M. in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group 171-179 (World Scientific, 2011).
    2 Guyomard, D. & Tarascon, J. M. Rocking‐chair or lithium‐ion rechargeable lithium batteries. Advanced Materials 6, 408-412 (1994).
    3 Li, L., Li, S. & Lu, Y. Suppression of dendritic lithium growth in lithium metal-based batteries. Chemical Communications 54, 6648-6661 (2018).
    4 Mizushima, K., Jones, P., Wiseman, P. & Goodenough, J. B. LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 15, 783-789 (1980).
    5 Blomgren, G. E. The development and future of lithium ion batteries. Journal of The Electrochemical Society 164, A5019-A5025 (2017).
    6 Meeus, M. Overview of battery cell technologies. 16 (2018).
    7 Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 7, 513-537 (2014).
    8 Liu, Y. et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nature Energy 2, 17083 (2017).
    9 Lin, D. et al. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proceedings of the National Academy of Sciences 114, 4613-4618 (2017).
    10 Li, D., Chen, L., Wang, T. & Fan, L.-Z. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS applied materials & interfaces 10, 7069-7078 (2018).
    11 Liang, S. et al. Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance. Solid State Ionics 318, 2-18 (2018).
    12 Lee, H., Yanilmaz, M., Toprakci, O., Fu, K. & Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science 7, 3857-3886 (2014).
    13 Galushkin, N., Yazvinskaya, N. & Galushkin, D. Mechanism of Thermal Runaway in Lithium-Ion Cells. Journal of The Electrochemical Society 165, A1303-A1308 (2018).
    14 Long, L., Wang, S., Xiao, M. & Meng, Y. Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A 4, 10038-10069 (2016).
    15 Li, W. et al. A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Advances 7, 23494-23501, doi:10.1039/c7ra02603j (2017).
    16 Jiang, Y. et al. Development of the peo based solid polymer electrolytes for all-solid state lithium ion batteries. Polymers 10, 1237 (2018).
    17 Wright, P. V. Developments in polymer electrolytes for lithium batteries. Mrs Bulletin 27, 597-602 (2002).
    18 Golodnitsky, D., Strauss, E., Peled, E. & Greenbaum, S. On order and disorder in polymer electrolytes. Journal of The Electrochemical Society 162, A2551-A2566 (2015).
    19 Shiau, H.-s. Optimization of Ionic Conduction in Ion-containing Polymers for Li-ion Batteries. (2014).
    20 Baskaran, R., Selvasekarapandian, S., Kuwata, N., Kawamura, J. & Hattori, T. Conductivity and thermal studies of blend polymer electrolytes based on PVAc–PMMA. Solid State Ionics 177, 2679-2682, doi:10.1016/j.ssi.2006.04.013 (2006).
    21 Gebreyesus, M. A., Purushotham, Y. & Kumar, J. S. Preparation and characterization of lithium ion conducting polymer electrolytes based on a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(methyl methacrylate). Heliyon 2, e00134, doi:10.1016/j.heliyon.2016.e00134 (2016).
    22 Kim, G. T. et al. UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids. Journal of Power Sources 195, 6130-6137, doi:10.1016/j.jpowsour.2009.10.079 (2010).
    23 JE Weston, B. S. Solid State Ionics. (1982).
    24 Shin, W.-K., Cho, J., Kannan, A. G., Lee, Y.-S. & Kim, D.-W. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries. Scientific Reports 6, 26332, doi:10.1038/srep26332
    https://www.nature.com/articles/srep26332 - supplementary-information (2016).
    25 Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46, 176-184, doi:10.1016/j.nanoen.2017.12.037 (2018).
    26 Croce, F. et al. Physical and Chemical Properties of Nanocomposite Polymer Electrolytes. The Journal of Physical Chemistry B 103, 10632-10638, doi:10.1021/jp992307u (1999).
    27 W Wieczorek, J. S., Z Florjańczyk Composite polyether based solid electrolytes. The Lewis acid-base approach (1996).
    28 Wang, A., Kadam, S., Li, H., Shi, S. & Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials 4, 15, doi:10.1038/s41524-018-0064-0 (2018).
    29 Feuillade, G. & Perche, P. Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry 5, 63-69, doi:10.1007/BF00625960 (1975).
    30 Ma, Y. et al. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries. ACS Applied Materials & Interfaces 9, 41462-41472, doi:10.1021/acsami.7b11342 (2017).
    31 Colin M. Burke, V. P., Abhishek Khetan, Venkatasubramanian Viswanathan and Bryan D. McCloskey. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li‐O2 battery capacity. (2015).
    32 Enableing technologies:ionic liquid.Chem.Files. Vol.5,No.6.
    33 Sheng, O. et al. Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries. Journal of Materials Chemistry A 5, 12934-12942, doi:10.1039/C7TA03699J (2017).
    34 Masayoshi Watanabe, M. K., Hiroo Matsuda, Koichi Tsunemi, Katsuhiro Mizoguchi, Eishun Tsuchida, Isao Shinohara High Lithium Ionic Conductivity of Polymeric Solid Electrolytes. (1981).
    35 AS Gozdz, C. S., JM Tarascon, PC Warren. Polymeric electrolytic cell separator membrane. (1995).
    36 Yu, C. et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface. Nature Communications 8, 1086, doi:10.1038/s41467-017-01187-y (2017).
    37 Ogata, M. W. N. Ionic conductivity of polymer electrolytes and future applications. British Polymer Journal 20, 181-192 (1988).
    38 White, R. P. & Lipson, J. E. G. Polymer Free Volume and Its Connection to the Glass Transition. Macromolecules 49, 3987-4007, doi:10.1021/acs.macromol.6b00215 (2016).
    39 Manuel Stephan, A. & Nahm, K. S. Review on composite polymer electrolytes for lithium batteries. Polymer 47, 5952-5964, doi:10.1016/j.polymer.2006.05.069 (2006).
    40 Shriver, D. F. & Farrington, G. C. Special Report: Solid Ionic Conductors. Chemical and Engineering News 63 (1985).
    41 Lu, Q. et al. Dendrite‐Free, High‐Rate, Long‐Life Lithium Metal Batteries with a 3D Cross‐Linked Network Polymer Electrolyte. Advanced Materials 29, 1604460 (2017).
    42 Croce, F., Brown, S. D., Greenbaum, S. G., Slane, S. M. & Salomon, M. Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on polyacrylonitrile. Chemistry of Materials 5, 1268-1272, doi:10.1021/cm00033a014 (1993).
    43 Wang, X. et al. Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids. Journal of Materials Chemistry A 5, 23844-23852, doi:10.1039/C7TA08233A (2017).
    44 Shi, X. et al. Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate-co-terephthalate) blends. RSC Advances 8, 11850-11861, doi:10.1039/c8ra01570h (2018).
    45 S Kim, C. & M Oh, S. Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes. Vol. 45 (2000).
    46 Wang, S.-H. et al. Immobilization of anions on polymer matrices for gel electrolytes with high conductivity and stability in lithium ion batteries. ACS applied materials & interfaces 8, 14776-14787 (2016).
    47 Elmore, C. et al. Ion Transport in Solvent-Free, Crosslinked, Single-Ion Conducting Polymer Electrolytes for Post-Lithium Ion Batteries. Batteries 4, doi:10.3390/batteries4020028 (2018).
    48 Kimura, K., Motomatsu, J. & Tominaga, Y. Correlation between Solvation Structure and Ion-Conductive Behavior of Concentrated Poly(ethylene carbonate)-Based Electrolytes. The Journal of Physical Chemistry C 120, 12385-12391, doi:10.1021/acs.jpcc.6b03277 (2016).
    49 Aziz, S. B., Woo, T. J., Kadir, M. & Ahmed, H. M. A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices 3, 1-17 (2018).
    50 Zheng, J., Lochala, J. A., Kwok, A., Deng, Z. D. & Xiao, J. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Advanced Science 4, 1700032 (2017).
    51 Fu, K. et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy & Environmental Science 10, 1568-1575, doi:10.1039/c7ee01004d (2017).
    52 Liu, M. et al. Efficient Li-Metal Plating/Stripping in Carbonate Electrolytes Using a LiNO3-Gel Polymer Electrolyte, Monitored by Operando Neutron Depth Profiling. Chemistry of Materials 31, 4564-4574, doi:10.1021/acs.chemmater.9b01325 (2019).
    53 Zeng, X.-X. et al. Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. Journal of the American Chemical Society 138, 15825-15828, doi:10.1021/jacs.6b10088 (2016).

    無法下載圖示 校內:2024-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE