| 研究生: |
李哲 Li, Zhe |
|---|---|
| 論文名稱: |
氮化鎵奈米孔洞之表面變化與其在氮化鎵發光二極體應用之研究 Investigating Morphology Transformation of Nanoporous GaN Template and Applications on GaN-Based LEDs |
| 指導教授: |
賴韋志
Lai, Wei-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 氮化鎵 、發光二極體 、電化學 、熱分解 、奈米孔洞 |
| 外文關鍵詞: | GaN, LED, Electrochemical, Nanoporous, Thermal decomposition |
| 相關次數: | 點閱:81 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要利用外加偏壓15 V、20 V、30 V以及130 V進行電化學氧化蝕刻N型氮化鎵(n-GaN) 模板產生形貌為樹枝狀的奈米孔洞(Nanoporous) 後,再成長(Regrowth) LED 結構觀察其光電特性,而經由再成長後會發生再結晶之現象,使得原本為形貌為樹枝狀奈米孔洞變化成為橢圓型及圓形,藉由樹枝狀的奈米孔洞(Nanoporous) 形成空氣洞(Air void) 後,使電子與電洞復合後產生的光在LED 內部有更多的機會散射使出光量增加,進而提高光輸出功率。與無結構的基板的LED (Conventional LED) 比較,在電流20 mA 注入下,15 V、20 V、30 V以及130 V 的光輸出功率分別為 7.58 mW、8.08 mW、10.90 mW 、5.44 mW 與10.99 mW ,可知15 V、20 V以及130 V相較於Conventional LED 的7.58 mW 分別增加了6.6 %、43.8%、45.0 %,而LED Ⅳ 推測因為再成長後試片表面變黑導致吸光的情形較劇烈,因此發光強度是衰減了28.2%。
由於利用外加偏壓進行電化學氧化蝕刻後的試片,經過高溫再成長後的試片以肉眼判斷表面呈現黑色,試片變黑的程度與奈米孔洞的大小及密度成正比,而試片表面變黑會造成光被吸收,因此希望可以透過MOVPE 改變腔體的溫度、氣體流量、熱處理的時間以及透過二次熱處理和再成長的方式改善在不同偏壓下進行電化學蝕刻的試片之表面變黑的現象。其中在上述方法中,我們利用MOVOE 改變腔體環境中的氫氣與氮氣流量後進行熱處理,原先環境氣體通入8 slm 的氨氣與30 slm 的氫氣,以肉眼觀看試片表面變黑的情形相當明顯,而當環境氣體通入4 slm 的氨氣與34 slm 的氫氣是可得到最明顯的改善。其中試片變黑的程度我們利用灰階色卡量化試片表面變黑的程度,因此可以區別出各試片表面變黑的程度。
In this thesis, we investigated the nanoporous n-type gallium nitride (n-GaN) template by electrochemical etching process. We investigated the photoelectric characteristics of regrown complete LEDs. In this experiment, we using the bias 15 V, 20 V, 30 V and 130 V operated electrochemical etching process. Under 20 mA current injection, the light output power were 7.58 mW, 8.08 mW, 10.90 mW, 5.44 mW and 10.99 mW, respectively. The light output power of conventional LED (normal LED) was 7.58 mW. Comparing the light output power conventional LED with sample that after electrochemical etching process using bias 15 V, 20 V and 130 V enhanced 6.6 %、43.8% and 45.0 %, respectively. But sample of after electrochemical etching process using bias 30 V decreased 28.2%, because surface of sample became black like. The black like absorbing light led to light output power degradation. On the other hand, under 20 mA current injection, the turn on voltage of conventional LED was 2.80 V, and after electrochemical etching process using bias 15 V, 20 V, 30 V and 130 V were 2.825 V, 2.825 V, 2.825 V and 2.825 V, respectively. Sample of after electrochemical etching process were slightly higher by 0.025 V. It could impute to defects increasing after electrochemical etching process. So they could not deposit very well as conventional LED during regrowth process by MOVPE.
To resolve absorbing light led to light output power degradation from surface of sample became black like. The condition of MOVPE chamber was modification that including temperature, time of annealing and gas flow of chamber. We using process that twice annealing and adjusting recipe of regrowth to decrease level of surface black like. Modifying gas flow in chamber was the best method to decrease level of surface black like. The gas flow of chamber changed from NH3: 8slm, H2: 30slm to NH3: 4 slm, H2: 34 slm.
第一章參考文獻
參考文獻
[1] S. Nakamura and G. Fasol, The Blue Laser Diodes, Springer. (1997) .
[2] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai,“Superbright green InGaN single-quantum-well structure light-emitting diodes”, Jpn. J. Appl. Phys., vol. 34, no.10B, pp. L1332-L1335, (1995)
[3] 史光國, “半導體發光及雷射二極體材料技術”, 全華科技圖書股份有限公司, (2004) .
[4] E. F. Schubert, “Light-Emitting Diodes”, Cambridge University Press,(2006) .
[5] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys., vol. 79, no. 10, pp. 7433-7473, (1996) .
[6] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices”, J. Appl. Phys., vol. 86, no. 1, pp.1, (1999) .
[7] E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart”, Science, vol. 308, no. 5726, pp. 1274-1278, (2005) .
[8] Z. H. Feng, Y. D. Qi, Z. D. Lu, K. M. Lau, “GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy”, Journal of Crystal Growth, vol. 272, pp. 327-332, (2004) .
[9] H. Y. Shin, S.K. Kwon , Y. I. Chang, M. J .Cho, K. H. Park, “Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate”, Journal of Crystal Growth, vol. 311, pp. 4167-4170, (2009) .
[10] W. K. Wang, D. S. Wuu, S. H. Lin, S. Y. Huang, K. S. Wen, R. H. Horng, “Growth and characterization of InGaN-based light-emitting diodes on patterned sapphire substrates”, Journal of Physics and Chemistry of Solids, vol.69, pp.714-718, (2008) .
[11] H. W. Huang, C. H. Lin, C. C. Yu, B. D. Lee, C. H. Chiu, C. F. Lai, H. C. Kuo, K. M. Leung, T. C. Lu and S. C.Wang, “Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography”, Nanotechnology, vol. 19, no. 18, pp. 5301-5304, (2010) .
[12] T. S. Kim, S. M. Kim, Y. H. Jang, and G. Y. Jung, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography”, Appl. Phys. Lett., vol. 91, no. 17, pp. 1114-1116, (2007) .
[13] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface”, J. Appl. Phys., vol. 93, no. 11,pp.9383-9385, (2003) .
[14] H. W. Huang, F. I. Lai, J. K. Huang, C. H. Lin, K. Y. Lee, C. F. Lin, C. C.Yu and H. C. Kuo, “Enhancement of light output power of GaN-basedlight-emitting diodes using a SiO2 nano-scale structure on a p-GaNsurface”, Semicond. Sci. Technol, vol. 25, no. 6, pp. 5007-5010, (2010) .
第二章參考文獻
[1] 楊亞諭,“光致電化學氧化與壓印技術於氮化物發光二極體之研究”,國立成功大學光電科學與工程研究所, (2009) .
[2] 許金福,“微米尺寸氮化銦鎵/氮化鎵發光二極體之製作與特性研究"國 立 中 央 大 學光 電 研 究 所,碩士論文(2005)
[3] 黃景蜂,“具有倒置電極之氮化鎵系列發光二極體特性分析" 國立成功大學光電科學與工程研究所,碩士論文(2009)
[4] 鄭治華,“利用陽極氧化鋁及氫化物氣相磊晶技術成長氮化鎵厚膜之研究"國立交通大學電子物理學系,碩士論文(2008)
[5] 鍾源聲,“以奈米尖錐製備具有規則排列之多孔性之氧化鋁薄膜"國立成功大學微機電系統工程研究所,碩士論文(2005)
[6] Xiuling Li, Young-Woon Kim, Paul W. Bohn, “In-plane bandgap control in porous GaN through electroless wet chemical etching"Appl. Phys. Lett., Vol. 80, No. 6, 11,, pp.980-981, 11 February 2002
[7] 李溱錙,以n型氮化鎵為模板利用電化學蝕刻形成奈米孔洞改善氮化鎵發光二極體出光效率,國立成功大學光電科學與工程學系,光 電產業研發碩士專班,碩士論文 (2012)
[8] 呂宏基,“ 利用多孔陽極氧化鋁提升發光二極體光輸出之研究"國立成功大學電機工程學系微電子工程研究所,碩士論文(2007)
第三章參考文獻
[1] 蕭楠騰,“利用偏壓輔助光電化學氧化法成長P型氮化鎵金氧半場效電晶體閘極介電層之製作與研究”國立成功大學微電子工程研究所,碩士論文(2009)
[2] Christopher D. Yerino , Yu Zhang, Benjamin Leung , Minjoo L. Lee, “Shape transformation of nanoporous GaN by annealing: From buried cavities to nanomembranes”Appl. Phys. Lett., Vol. 98, pp. 251910-1-3,(2011) .
[3] 李溱錙,“以n型氮化鎵為模板利用電化學蝕刻形成奈米孔洞改善氮化鎵發光二極體出光效率”,國立成功大學光電科學與工程學系光電產業研發碩士專班,碩士論文 (2012)
第四章參考文獻
[1] Qiugui Zhou, Dion C. McIntosh, Zhiwen Lu, “GaN/SiC avalanche photodiodes” Appl. Phys. Lett., 99, pp.131110-1 - 131110-3, 2011
[2] Ah Hyun Park, Kang Jea Lee, Tae Su Oh, Yong Seok Lee, “Growth of GaN Epilayers on Defect-Selective Etched Nanoporous GaN Templates Generated by Electrochemical Etching” Journal of The Electrochemical Society, 158 (2) D119-D122 (2011)
[3] A. Chitnis, J. Sun, V. Mandavilli, R. Pachipulusu, S. Wu, M. Gaevski, V. Adivarahan, J. P. Zhang, M. Asif Khan, A. Sarua and M. Kuball, Appl. Phys. Lett., 81, 3491, 2002
[4] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speck, Appl. Phys. Lett. 81, 79 (2002)
[5] P. Perlin, C. Jauberthie-Carillon, J. P. Itie, A. S. Miguel, I. Grzegory, and A. Polian, “Raman scattering and X-ray-absorption spectroscopy in gallium nitride under high pressure,” Phys. Rev. B, vol. 45, no. 1, pp. 83–89, Jan. (1992)
[6] Elif Berkman, “GROWTH OF GaN FROM GALLIUM AND AMMONIA VIA A MODIFIED SANDWICH GROWTH TECHNIQUE”, A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy, 2005.