簡易檢索 / 詳目顯示

研究生: 王善榮
Wang, Shann-Rong
論文名稱: 分析台灣北部COVID-19時空群聚
Analysis of Space-Time Clustering of COVID-19 in Northern Taiwan
指導教授: 吳致杰
Wu, Chih-Chieh
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 98
中文關鍵詞: 時空疾病群聚偵測空間疾病群聚偵測危險因子COVID-19
外文關鍵詞: Space-time scan statistic, Spatial scan statistic, Generalized map-based pattern recognition procedure, Risk factor, COVID-19
相關次數: 點閱:113下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 疾病群聚通常指疾病在時間或空間中有異常高的發生情況。檢測疾病群聚有助於發現潛在的危險因子,並應用在疾病監測系統中,對疾病的預防與控制有很大的幫助。本研究偵測台灣北部COVID-19時空群聚現象,空間中偵測方法我們分別使用Kulldorff於1997年所提出的spatial scan statistic和Wu與Shete於2020年所提出的generalized map-based pattern recognition procedure,時空中偵測方法使用Kulldorff於1998年所提出的space-time scan statistic。COVID-19如大多數疾病一樣是複雜性的,所以上述方法都可以校正危險因子。
    在空間與時空偵測疾病群聚分析中,最常被使用的方法之一為spatial scan statistic,此方法主要以圓形掃描窗口對研究區域進行掃描,透過likelihood ratio test找出最大可能疾病群聚,再使用Monte Carlo simulation獲得機率分布並進行統計推論。Wu與Shete的方法用疾病發生率的排序來尋找群聚,且可以探討疾病稀少的地區。兩者對不同形式的疾病群聚,有不同的敏感度與統計檢定力,各自的優勢可以找出具有代表性的群聚,並提供我們不同且有用的資訊。
    Space-time scan statistic為時空中疾病群聚的偵測方法,是將原本spatial scan statistic的概念,加上時間後延伸到三維的時空中。我們將時間的概念加入,使得原本的圓形掃描窗口,在把時間當作高度加入後,變成圓柱狀的掃描窗口,以進行時空中疾病群聚偵測。在我們的研究中,時空中的時間掃描區間使用7天與21天,分別表示短時間內快速上升與長時間內維持最高疾病發生率的時空疾病群聚現象。
    台灣從2020年1月開始有COVID-19爆發,而直到2022年4月後有最高一波的疫情發生,尤其在2022/4/1-2022/12/31佔台灣確診人數的99%以上,所以我們選擇此為時空中時間掃描區間,而台灣北部為疫情爆發的源頭,特別在台北、新北、基隆與桃園,為人口稠密區且有大量病例數,所以地理上掃描包含上述4個縣市,並依照行政區分成61區進行掃描。校正年齡性別後,以7天為最大掃描窗口的最大最有可能疾病群聚M,以新北新莊為中心,總共包含11個地區,時間區間為2022/5/11-2022/5/17。以21天為最大掃描窗口的結果中,偵測到同樣以新北新莊為中心的M,也偵測到被包含在其中的疾病群聚MO,地點只有新北三重,時間區間為2022/5/6-2022/5/26。而在固定時間區間後,繼續使用Wu與Shete的方法偵測到的疾病群聚,都以新北三重為主要中心。
    由於資料的限制,本研究只針對年齡和性別進行校正,但發現大部分的時空群聚不只在短時間中有快速上升的現象,也持續維持最高發生率的情況。在我們的研究中,使用時空疾病群聚偵測會比空間偵測更加有用。時空偵測除了確定群聚地點外,也確認群聚發生的時間區間,讓我們可以針對可能的疾病群聚探討其潛在的危險因子,以利預防或控制未來傳染性疾病與慢性病的擴大發生。另外,本研究除了疾病群聚外,也針對疾病相對稀少進行探討。

    COVID-19 has evolved into a global pandemic since 2020, and Taiwan experienced the worst wave of the outbreak since April 2022. We performed spatial and space-time clustering analysis of COVID-19 from April 1, 2022 to December 31, 2022, in northern Taiwan, including 4 cities: Taipei, New Taipei, Taoyuan and Keelung. The clustering detection methods we used in space are the spatial scan statistic by Kulldorff in 1997 and the generalized map-based pattern recognition procedure by Wu and Shete in 2020. The space-time clustering analysis method we used is the space-time scan statistic also by Kulldorff in 1998. In this thesis, we considered and adjusted for 2 risk factors, age and gender. In the space-time disease clustering analysis by the space-time scan statistic, the 7-day analysis detected a disease cluster whose center was located in Xinzhuang, New Taipei, including 11 districts, from May 11 to May 17, 2022. The 21-day analysis detected the same disease cluster. In addition, a subcluster was found within this disease cluster whose center was located in Sanchong, New Taipei, including only 1 district, within the time frame from May 6 to May 26, 2022. We found that the majority of the observed space-time clusters were not only quickly emerging clusters within a shorter period of time but also sustained clusters with the highest incidence rate over a longer time. The spatial and space-time disease cluster analyses with adjustment of known risk factors allow us to explore more potential risk factors associated with the occurrence of disease clusters, facilitating future disease prevention and control.

    摘要 I Extended Abstract II 目錄 V 表目錄 VIII 圖目錄 X 一、 研究背景 1 1.1 疾病群聚介紹 1 1.2 疾病群聚準則 1 1.3 疾病群聚檢定 2 1.4 COVID-19 3 1.5 危險因子 5 1.6 研究目的 5 二、 文獻回顧 7 2.1 空間統計量的應用 7 2.2 時空統計量的應用 8 三、 研究方法與材料 9 3.1 統計方法 9 3.1.1 Generalized map-based pattern recognition procedure 9 3.1.2 Normal model 11 3.1.3 Spatial scan statistic 11 3.1.4 Space-time scan statistic 15 3.1.5 危險因子校正 16 3.2 統計軟體 17 3.3 資料來源 17 3.4 研究人口 18 四、 空間群聚分析結果 25 4.1 2022年台灣北部spatial scan statistic分析結果 25 4.1.1 校正前疾病群聚結果 25 4.1.2 校正年齡後疾病群聚結果 26 4.1.3 校正年齡性別後疾病群聚結果 26 4.1.4 校正前疾病相對稀少結果 30 4.1.5 校正年齡後疾病相對稀少結果 30 4.1.6 校正年齡性別後疾病相對稀少結果 31 4.1.7 結果討論 31 4.2 2022年台灣北部generalized map-based pattern recognition procedure分析結果 36 4.2.1 校正前疾病群聚結果 36 4.2.2 校正年齡後疾病群聚結果 37 4.2.3 校正年齡性別後疾病群聚結果 37 4.2.4 校正前疾病相對稀少結果 44 4.2.5 校正年齡後疾病相對稀少結果 44 4.2.6 校正年齡性別後疾病相對稀少結果 45 4.2.7 結果討論 45 五、 時空群聚分析結果 51 5.1 2022年台灣北部space-time scan statistic分析結果 51 5.1.1 校正前疾病群聚結果 51 5.1.2 校正年齡後疾病群聚結果 52 5.1.3 校正年齡性別後疾病群聚結果 53 5.1.4 校正前疾病相對稀少結果 60 5.1.5 校正年齡後疾病相對稀少結果 60 5.1.6 校正年齡性別後疾病相對稀少結果 61 5.1.7 結果討論 61 5.2 2022年台灣北部space-time scan statistic分析結果以generalized map-based pattern recognition進行應用 69 5.2.1 以7天為最大掃描區間的疾病群聚結果 69 5.2.2 以21天為最大掃描區間的疾病群聚結果 70 5.2.3 以7天為最大掃描區間的疾病相對稀少結果 78 5.2.4 以21天為最大掃描區間的疾病相對稀少結果 79 5.3 比較2022年台灣北部space-time scan statistic與generalized map-based pattern recognition的分析結果 86 5.4 結果討論 86 六、 研究總結 88 6.1 研究討論 88 6.2 研究優勢與限制 91 6.3 研究結論 93 七、 參考資料 95

    Booth A, Reed AB, Ponzo S, Yassaee A, Aral M, Plans D, Labrique A, Mohan D (2021) Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS One 16: e0247461. doi: 10.1371/journal.pone.0247461
    Centers for Disease C (1990) Guidelines for investigating clusters of health events.
    Cliff AD, Ord JK (1973) Spatial autocorrelation. London: Pion. Progress in Human Geography 19: 245-249. doi: 10.1177/030913259501900205
    Cressie N, Chan NH (1989) Spatial Modeling of Regional Variables. Journal of the American Statistical Association 84: 393-401. doi: 10.2307/2289922
    Cruz R, Diz-de Almeida S, López de Heredia M, Quintela I, Ceballos FC, Pita G, Lorenzo-Salazar JM, González-Montelongo R, Gago-Domínguez M, Sevilla Porras M, Tenorio Castaño JA, Nevado J, Aguado JM, Aguilar C, Aguilera-Albesa S, Almadana V, Almoguera B, Alvarez N, Andreu-Bernabeu Á, Arana-Arri E, Arango C, Arranz MJ, Artiga M-J, Baptista-Rosas RC, Barreda-Sánchez M, Belhassen-Garcia M, Bezerra JF, Bezerra MAC, Boix-Palop L, Brion M, Brugada R, Bustos M, Calderón EJ, Carbonell C, Castano L, Castelao JE, Conde-Vicente R, Cordero-Lorenzana ML, Cortes-Sanchez JL, Corton M, Darnaude MT, De Martino-Rodríguez A, del Campo-Pérez V, Diaz de Bustamante A, Domínguez-Garrido E, Luchessi AD, Eiros R, Estigarribia Sanabria GM, Carmen Fariñas M, Fernández-Robelo U, Fernández-Rodríguez A, Fernández-Villa T, Gil-Fournier B, Gómez-Arrue J, González Álvarez B, Gonzalez Bernaldo de Quirós F, González-Peñas J, Gutiérrez-Bautista JF, Herrero MJ, Herrero-Gonzalez A, Jimenez-Sousa MA, Lattig MC, Liger Borja A, Lopez-Rodriguez R, Mancebo E, Martín-López C, Martín V, Martinez-Nieto O, Martinez-Lopez I, Martinez-Resendez MF, Martinez-Perez A, Mazzeu JF, Merayo Macías E, Minguez P, Moreno Cuerda V, Silbiger VN, Oliveira SF, Ortega-Paino E, Parellada M, Paz-Artal E, Santos NPC, Pérez-Matute P, Perez P, Pérez-Tomás ME, Perucho T, Pinsach-Abuin ML, Pompa-Mera EN, Porras-Hurtado GL, Pujol A, Ramiro León S, Resino S, Fernandes MR, Rodríguez-Ruiz E, Rodriguez-Artalejo F, Rodriguez-Garcia JA, Ruiz Cabello F, Ruiz-Hornillos J, Ryan P, Soria JM, Souto JC, et al. (2022) Novel genes and sex differences in COVID-19 severity. Human Molecular Genetics 31: 3789-3806. doi: 10.1093/hmg/ddac132
    Degenhardt F, Ellinghaus D, Juzenas S, Lerga-Jaso J, Wendorff M, Maya-Miles D, Uellendahl-Werth F, ElAbd H, Rühlemann MC, Arora J, Özer O, Lenning OB, Myhre R, Vadla MS, Wacker EM, Wienbrandt L, Blandino Ortiz A, de Salazar A, Garrido Chercoles A, Palom A, Ruiz A, Garcia-Fernandez AE, Blanco-Grau A, Mantovani A, Zanella A, Holten AR, Mayer A, Bandera A, Cherubini A, Protti A, Aghemo A, Gerussi A, Ramirez A, Braun A, Nebel A, Barreira A, Lleo A, Teles A, Kildal AB, Biondi A, Caballero-Garralda A, Ganna A, Gori A, Glück A, Lind A, Tanck A, Hinney A, Carreras Nolla A, Fracanzani AL, Peschuck A, Cavallero A, Dyrhol-Riise AM, Ruello A, Julià A, Muscatello A, Pesenti A, Voza A, Rando-Segura A, Solier A, Schmidt A, Cortes B, Mateos B, Nafria-Jimenez B, Schaefer B, Jensen B, Bellinghausen C, Maj C, Ferrando C, de la Horra C, Quereda C, Skurk C, Thibeault C, Scollo C, Herr C, Spinner CD, Gassner C, Lange C, Hu C, Paccapelo C, Lehmann C, Angelini C, Cappadona C, Azuure C, Bianco C, Cea C, Sancho C, Hoff DAL, Galimberti D, Prati D, Haschka D, Jiménez D, Pestaña D, Toapanta D, Muñiz-Diaz E, Azzolini E, Sandoval E, Binatti E, Scarpini E, Helbig ET, Casalone E, et al. (2022) Detailed stratified GWAS analysis for severe COVID-19 in four European populations. Hum Mol Genet 31: 3945-3966. doi: 10.1093/hmg/ddac158
    Greene SK, Peterson ER, Balan D, Jones L, Culp GM, Fine AD, Kulldorff M (2021) Detecting COVID-19 Clusters at High Spatiotemporal Resolution, New York City, New York, USA, June-July 2020. Emerg Infect Dis 27: 1500-4. doi: 10.3201/eid2705.203583
    Greene SK, Peterson ER, Kapell D, Fine AD, Kulldorff M (2016) Daily Reportable Disease Spatiotemporal Cluster Detection, New York City, New York, USA, 2014-2015. Emerg Infect Dis 22: 1808-12. doi: 10.3201/eid2210.160097
    Grimson RC, Wang KC, Johnson PWC (1981) Searching for hierarchical clusters of disease: Spatial patterns of sudden infant death syndrome. Social Science & Medicine. Part D: Medical Geography 15: 287-293. doi: https://doi.org/10.1016/0160-8002(81)90004-6
    Hjalmars U, Kulldorff M, Gustafsson G, Nagarwalla N (1996) Childhood leukaemia in Sweden: using GIS and a spatial scan statistic for cluster detection. Stat Med 15: 707-15. doi: 10.1002/(sici)1097-0258(19960415)15:7/9<707::aid-sim242>3.0.co;2-4
    Jung I, Kulldorff M, Klassen AC (2007) A spatial scan statistic for ordinal data. Stat Med 26: 1594-607. doi: 10.1002/sim.2607
    Jung I, Kulldorff M, Richard OJ (2010) A spatial scan statistic for multinomial data. Stat Med 29: 1910-8. doi: 10.1002/sim.3951
    Kleinman KP, Abrams AM, Kulldorff M, Platt R (2005) A model-adjusted space–time scan statistic with an application to syndromic surveillance. Epidemiology and Infection 133: 409-419. doi: 10.1017/S0950268804003528
    Kulldorff M (1997) A spatial scan statistic. Communications in Statistics - Theory and Methods 26: 1481-1496. doi: 10.1080/03610929708831995
    Kulldorff M (2001) Prospective time periodic geographical disease surveillance using a scan statistic. Journal of the Royal Statistical Society: Series A (Statistics in Society) 164.
    Kulldorff M, Athas WF, Feurer EJ, Miller BA, Key CR (1998) Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am J Public Health 88: 1377-80. doi: 10.2105/ajph.88.9.1377
    Kulldorff M, Feuer EJ, Miller BA, Freedman LS (1997) Breast cancer clusters in the northeast United States: a geographic analysis. Am J Epidemiol 146: 161-70. doi: 10.1093/oxfordjournals.aje.a009247
    Kulldorff M, Huang L, Konty K (2009) A scan statistic for continuous data based on the normal probability model. International Journal of Health Geographics 8: 58. doi: 10.1186/1476-072X-8-58
    Kulldorff M, Nagarwalla N (1995) Spatial disease clusters: detection and inference. Stat Med 14: 799-810. doi: 10.1002/sim.4780140809
    Lai WT, Chen CH, Hung H, Chen RB, Shete S, Wu CC (2018) Recognizing spatial and temporal clustering patterns of dengue outbreaks in Taiwan. BMC Infect Dis 18: 256. doi: 10.1186/s12879-018-3159-9
    Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27: 209-20.
    Mostashari F, Kulldorff M, Hartman JJ, Miller JR, Kulasekera V (2003) Dead bird clusters as an early warning system for West Nile virus activity. Emerg Infect Dis 9: 641-6. doi: 10.3201/eid0906.020794
    Murphy SL, Kochanek KD, Xu J, Arias E (2021) Mortality in the United States, 2020. NCHS Data Brief: 1-8.
    Naus JI (1965) The Distribution of the Size of the Maximum Cluster of Points on a Line. Journal of the American Statistical Association 60: 532-538. doi: 10.1080/01621459.1965.10480810
    Pijls BG, Jolani S, Atherley A, Derckx RT, Dijkstra JIR, Franssen GHL, Hendriks S, Richters A, Venemans-Jellema A, Zalpuri S, Zeegers MP (2021) Demographic risk factors for COVID-19 infection, severity, ICU admission and death: a meta-analysis of 59 studies. BMJ Open 11: e044640. doi: 10.1136/bmjopen-2020-044640
    Shiels MS, Haque AT, Berrington de González A, Freedman ND (2022) Leading Causes of Death in the US During the COVID-19 Pandemic, March 2020 to October 2021. JAMA Intern Med 182: 883-886. doi: 10.1001/jamainternmed.2022.2476
    Swan DA, Bracis C, Janes H, Moore M, Matrajt L, Reeves DB, Burns E, Donnell D, Cohen MS, Schiffer JT, Dimitrov D (2021) COVID-19 vaccines that reduce symptoms but do not block infection need higher coverage and faster rollout to achieve population impact. Sci Rep 11: 15531. doi: 10.1038/s41598-021-94719-y
    Wu C-C, Chu Y-H, Shete S, Chen C-H (2021) Spatially varying effects of measured confounding variables on disease risk. International Journal of Health Geographics 20: 45. doi: 10.1186/s12942-021-00298-6
    Wu C-C, Shete S (2020) Differentiating anomalous disease intensity with confounding variables in space. International Journal of Health Geographics 19: 37. doi: 10.1186/s12942-020-00231-3
    Xu J, Murphy SL, Kochanek KD, Arias E (2022) Mortality in the United States, 2021. NCHS Data Brief: 1-8.

    下載圖示 校內:2024-05-31公開
    校外:2024-05-31公開
    QR CODE