簡易檢索 / 詳目顯示

研究生: 張益騰
Chang, Yi-Teng
論文名稱: 類神經網路結合非線性能量消散原理應用於土壤液化潛勢評估之研究
Evaluation of Soil Liquefaction Potential by Using Artificial Neural Network and Nonlinear Energy Dissipation Principle
指導教授: 陳景文
Chen, Jing-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 123
中文關鍵詞: 土壤液化類神經網路遲滯圈能量反覆三軸試驗
外文關鍵詞: soil liquefaction, neural network, seismic energy
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 土壤液化一直是大地工程中很重要的課題,因此也發展出許多不同的液化評估方法,其中簡易經驗評估法為工程界所常利用。Nemat-Nasser and Shokooh在1979年提出地震能量消散與孔隙水壓增量有關的概念,此後,根據能量觀點來探討液化潛勢之可能性便成為液化評估主要的研究方向之一。本研究參考Berrill and Davis(1985)提出的非線性能量消散模式,以孔隙水壓增量與消散能量間之非線性關係為基礎,運用大地工程界常用之反覆三軸試驗資料推算遲滯圈液化能量,再以類神經網路自動試誤程式經4000次自動試誤後,求得網路模式之最佳架構。本研究以類神經網路液化能量模型配合九二一地震之現場試驗數據,運用多變量分析中之判別分析方法訂定液化分界線並計算其液化機率,建立液化評估之經驗準則。研究結果顯示,以實驗室試驗資料建立之類神經網路液化能量模型,對於現地資料液化判定之成功率約為91%,顯示本研究所提出的能量式液化評估模式有其合理之評估能力,可擴展應用於大地工程實務設計時之參考。

    The soil liquefaction is always the important topics in the discipline of Geotechnical Engineering. Many methods related to evaluation of the potential of the soil liquefaction have been developed. However, the Simplified Empirical method the one that is much more common used both in academic and in practice.
    Since Nemat-Nasser and Shokooh in 1979 proposed the principle of relations between dissipation of seismic energy and the increment of pore water pressure during earthquake, the method on the basis of the seismic energy concept has become the mainstream on evaluation of the soil liquefaction potential.
    By referring the principle of the nonlinear energy dissipation that proposed by Berrill and Davis in 1985 and the liquefaction energy that calculated from the hysteresis loop obtained from the soil cyclic triaxial tests in laboratory, the neural network model is used in this study to simulate the liquefaction energy in field. The framework of the model is found by the auto trial and error process. And by associating with the statistical discriminant method, the critical line judging the occurrence of the soil liquefaction can be developed. With the 91% of success rate of the liquefaction assessment, the proposed neural network model is fair reasonable and suitable for the practice in geotechnical engineering.

    摘要 I ABSTRACT III 致 謝 V 目錄 VII 表目錄 XIII 圖目錄 XV 符號 XIX 第一章 緒論 1 1.1研究動機 1 1.2研究目的及方法 3 1.3研究流程 4 第二章 文獻回顧 5 2.1土壤液化之定義 5 2.2土壤液化機制 6 2.3影響土壤液化之因素 7 2.3.1土壤特性 8 2.3.2環境因素 9 2.3.3地震特性 10 2.4土層液化潛能評估法 10 2.4.1簡易準則分析法 11 2.4.2簡易經驗分析法 11 2.4.3總應力分析法 31 2.4.4有效應力分析法 31 第三章 類神經網路模式應用 33 3.1類神經網路簡介 33 3.1.1生物神經網路 34 3.1.2人工神經元網路 35 3.1.3類神經網路的運作 36 3.1.4類神經網路分類 37 3.2倒傳遞類神經網路 39 3.2.1倒傳遞網路基本組成單元 39 3.2.2倒傳遞類神經網路演算法 41 3.2.3倒傳遞類神經網路特性 42 第四章 研究方法 45 4.1能量消散模式建立 45 4.1.1砂性土壤中的能量消散機制 45 4.1.2反覆三軸遲滯圈 46 4.1.3遲滯圈消散能量計算方法 48 4.2孔隙水壓與消散能量之非線性關係 53 4.3類神經網路應用於評估液化能量之推演 56 4.3.1類神經網路之演算法 56 4.3.2數據前處理 57 4.3.3類神經網路參數之濾定 58 4.3.4網路系統參數設定 58 4.3.5自動試誤程式之建置 64 4.3.6權重比例計算 65 4.4現地鑽探孔位資料換算 66 4.5液化潛能評估模式之建置 68 4.5.1能量消散函數之推導 68 4.5.2地質材料衰減因子A(a)之推求 71 4.6液化判定準則 73 4.6.1液化臨界線之建立 73 4.6.2液化安全係數 74 4.7液化機率之推算 74 第五章、動三軸應變能應用液化評估模式建立 79 5.1資料庫建立 79 5.1.1三軸試驗數據條件(麥寮砂、Nevada砂資料) 79 5.1.2九二一集集地震土壤液化資料 83 5.2反覆三軸應力-應變遲滯圈能量分析 85 5.3類神經網路應用於液化能量模擬 93 5.3.1網路之參數擇取 93 5.3.2網路之訓練與測試 95 5.3.3類神經網路自動試誤法結果 95 5.4類神經網路程式之影響因素權重計算 96 5.5經驗式能量法應用於液化判定準則之建立 100 5.5.1判別分析求取液化臨界線 101 5.5.2孔隙水壓與消散能量之關係比較 102 5.6液化機率評估 104 第六章 結論與建議 107 6.1結論 107 6.2建議 109 參考文獻 111 附錄一 現地土壤鑽孔資料 119 附錄二 C(Wh)能量法 120 附錄三 各現地鑽探點位之馬氏距離與液化判定機率 121 作者簡述 123

    1. 王進德、蕭大全,「類神經網路與模糊控制理論入門」,全華科技,1999。
    2. 古志生,「CPT土壤分類及液化評估之研究」國立成功大學土木工程研究所博士論文,2001。
    3. 李雅芬,「基於可靠度理論之土壤液化機率評估法之研究」,國立成功大學土木工程研究所博士論文,2007。
    4. 亞新工程顧問股份有限公司,「土壤液化評估與處理對策研擬─第一期計畫(彰化員林鎮、大村鄉、社頭鄉)總報告」,2000。
    5. 周政宏「神經網路-理論與實務」,松崗電腦圖書資料公司,台北,1996。
    6. 林震岩「神經網路-SPSS的操作與應用」,智勝文化,2006。
    7. 施政杰,「能量式液化評估模式之研究」,國立成功大學土木工程研究所碩士論文,2003。
    8. 施慶煌,「低塑性粉質砂土之原狀與重模試體動態性質之探討」,國立成功大學土木工程研究所碩士論文,2009。
    9. 施繼揚,「遲滯圈能量原理應用於液化潛勢評估模式之建置」,國立成功大學土木工程研究所碩士論文,2009。
    10. 胡玉城,「暢談類神經網路」,倚天資訊,1992。
    11. 范恩碩,「以九二一集集地震案例套討細粒料對液化潛能評估之影響」,國立成功大學土木工程研究所碩士論文,2004。
    12. 張孝德、蘇木春,「機器學習-類神經網路、模糊系統以及基因演算法則」,全華科技,2003。
    13. 張浼珣,「初步液化潛能分區法之研究」,國立成功大學土木工程研究所碩士論文,2005。
    14. 張斐章,張麗秋,黃浩倫,「類神經網路理論與實務」,東華書局,台北,2003。
    15. 張朝盛,「土壤液化潛能之類神經網路分析」,國立交通大學土木工程研究所碩士論文,2000。
    16. 張舜孔,「類神經網路應用於阿里山公路邊坡破壞因子之分析研究」,2003。
    17. 陳俶季,「土壤液化潛能之風險評估」,地工技術雜誌,第38期,第5~16頁,1992。
    18. 陳順宇,「多變量分析」,華泰書局,2000。
    19. 陳毓山,「螞蟻演算法最佳化倒傳遞類神經網路於土層剪力波速評估之研究」,國立台灣大學土木工程研究所碩士論文,2003。
    20. 陳嘉謙,「飽和砂土等向及非等向壓密不排水三軸試驗力學特性之研究」,長榮大學土地管理與開發學系研究所碩士論文,2008。
    21. 彭成麒,「貫入試驗之倒傳遞類神經網路與頻散曲線之有線差分法評估地盤剪力波速」,國立台灣大學土木工程研究所碩士論文,2002。
    22. 辜炳寰,「類神經網路於土壤液化評估之應用」,國立成功大學土木工程研究所碩士論文,2002。
    23. 葉怡成,「類神經網路模式應用與實作」,儒林圖書,2000。
    24. 劉晉宏,「基因演算法自動演化類神經網路應用於飽和砂土不排水三軸應力-應變行為之模擬」,長榮大學土地管理與開發學系研究所碩士論文,2009。
    25. 蔡維倫,「地震能量於液化評估準則建立之應用」,國立成功大學土木工程研究所碩士論文,2002。
    26. 賴聖耀、林炳森、李豐博、謝明志,「荷式錐貫入試驗與液化可靠度之相關研究」,土木水利,第十六卷,第二期,第43-60頁,1989。
    27. 羅華強,「類神經網路-MATLAB的應用」,高立圖書,2005。
    28. AlKahatib, M., “Liquefaction Assessment by Strain Energy Approach,” Ph.D. thesis, Wayne State University, p. 212 ,1994.
    29. Baziar, M.H. and Jafarian, Y., ”Assessment of Liquefaction Triggering Using Strain Energy Concept and ANN Model: Capacity Energy,” Soil Dynamics and Earthquake Engineering 27, pp. 1056-1072 ,2007.
    30. Berrill, J.B. and Davis R.O., “Energy Disssipation and Seismic Liquefaction of Sands: Revised Model”, JSSMFE Soil and Foundations Vol. 25, No.2, pp. 106-118, 1985.
    31. Brune, J.N., "Tectonic Stress and The Spectra of Seismic Shear Waves," J. Geophys.Res.75, pp. 4997-5009,1970.
    32. Casagrande, A., “Characteristics of Cohesionless Soil Affecting the Stability of Slope and Earth Fills,” Journal of the Boston Society of Civil Engineering, reprinted in Contributions to Soil Mechanics, Boston Society of Civil Engineering, pp. 257-276,1936.
    33. Chen, Y.R., “ Behavior of a Fine Sand in Triaxial, Torsional and Rotational Shear Tests,” Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of California, Davis, USA,1995.
    34. Chen, Y.R., Hsieh, S.C., Chen, J.W. and Shih, C.C., ”Energy-based Probabilistic Evaluation of Soil Liquefaction,” Soil Dynamics and Earthquake Engineering 25, pp. 55-68,2005.
    35. Cybenko G., “Approximation by Superpositions of a Sigmoidal Function,” Urbana: University of Illinois,1989.
    36. Davis, R.O. and Berrill J.B., “Energy Dissipation and Seismic Liquefaction in Sands,” Earthquake Engineering and Structure Dynamics, Vol. 10, pp. 59-68,1982.
    37. Davis, R.O. and Berrill J.B., “Pore Pressure and Dissipated Energy in Earthquake-Field Verification,” Journal of Geotechnical Engineering,ASCE, Vol. 127, No.3, March (2001).
    38. Dobry, R., Ladd, R.S., Yokel, F.Y., Chung, R.M., and Powell, D., “Prediction of Pore Water Pressure Buildup and Liquefaction of Sands During Earthquake by the Cyclic Strain Method,” NBS Building Science Seriess138, US Department of Commerce, pp. 152 ,1982.
    39. Garson, G.D., ”Interpreting Neural Network Connection Weights,” AI Expert, 6(7), pp. 47-51,1991.
    40. Geller, R.J., "Scaling Relations for Earthquake Source Parameters and Magnitudes," Bull. Seism. Soc. Am., 66 , pp. 1501-1523,1976.
    41. Goh, A.T.C., ”Back-propagation Neural Networks for Modeling Complex Systems,” Artificial Intelligence in Engineering , pp. 143-151,1995.
    42. Green R.A., Mitchell J.K., Polito C.P., “Energy-based excess pore pressure generation model for cohesionless soils,” In: Proceedings of the John Booker memorial symposium, Sydney, Australia, A.A. Balkema Publishers, pp. 383-390,2000.
    43. Green, R.A., “Energy-based evaluation and Remediation of Liquefiable soils,” Ph.D. thesis, Civil Engineering, Virginia Polytechnic Institute and State Univ,2001.
    44. Gutenberg, B. and Richter, C.F., “Magnitude and Energy of Earthquakes, ” Ann. Geofis., 9, pp. 1-15,1956.
    45. Hall, W.J. and McCabe, S.L., ”Current Design Spectra: Background and Limitations, Earthquake Hazards and the Design of Constructed Facilities in the Eastern United States,” Annals of the New York Academy of Sciences, pp. 222-233,1989.
    46. herif, M.A., Ishibashi, I., and Tsuchiga, C., “Saturated Effects on Initial Soil Liquefaction,” Journal of the Geotechnical Engineering Division, ASCE Vol. 103, No. 8, pp. 914-917,1977.
    47. Holland, J. H., “Adaptation in Natural and Artificial Systems,” second ed. Cambridge: MIT Press, MA. ,1992.
    48. Idriss, I.M., and Seed, H.B., ”Seismic Response of Horizontal Layers,” Journal of the Soil Mechanics and Foundations Divion, pp. 1003-1031,1968.
    49. Ishihara, K., and Tadatsu, H., “Effects of Over-consolidation k0 Conditions on the Liquefaction Characteristics of Sands,” Soils and Foundations, Vol. 19, No. 4, pp. 59-68 ,1979.
    50. Ishihara, K., Sodekawa, M., and Tanaka, Y., “Effect of Over consolidation on Liquefaction Characteristic of Sand Containing Fine”, Dynamic Geotechnical Test, American Society for Testing and Materials,pp. 246-264 ,1978.
    51. Iwasaki, T., “Soil Liquefaction Study in Japan: State-of-the-Art,” Soil Dynamics and Earthquake Engineering, Vol. 5, No. 1 ,1986.
    52. Iwasaki, T., Tatsouoka, F., and Takagi, Y., “Shear Moduli of Sand Under Cyclic Torsional Shear Loading,” Soils and Foundations, Vol. 18, No. 14, pp. 1-18,1978.
    53. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice Hall Publishing, Upper Saddle River, NJ, p. 653,1996.
    54. Kutter, B.L., Chen, Y.R., and Shen, C.K., “Triaxial and torsional shear test results for sand, Contract Report to Naval Civil Engineering Laboratory,” Report No. CR94.003-SHR, Naval Facilities Engineering Service Center, Port Hueneme, CA, USA, 1994.
    55. Law, K.T., Cao, Y.L., and He, G.N., “An Energy Approach for Assessing Seismic Liquefaction Potential,” Canadian Geotechnical Journal, 27(3), pp. 320-329,1990.
    56. Lee, M.K.W. and Finn, W.D.L. ,“Dynamic Effective Stress Response Analysis of Soil Deposits with Energy Transmitting Boundary Including Assessment of Liquefaction Potential,” Soil Mechanics Series No. 38, University of British Columbia, Vancouver, Canda ,1978.
    57. Liao, S. C. and Whitman, R. V., “Overburden Correction Factors for SPT in Sand”, Journal of Geotechnical Engineering, ASCE, Vol. 112, No. GT3, pp. 373 -377, 1986.
    58. Mulilis, J.P., Mori, K., Seed, H.B., and Chan, C.K., “Resistance to Liquefaction Due to Sustained Pressure,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT7, pp. 793-797 ,1977.
    59. Nemat-Nasser, S. and Shokooh, A., “A Unified Approach Densification and Liquefaction of Cohesionless Sand in Cyclic Shearing,” Canadian Geotech. J. 16, pp. 659-678 ,1979.
    60. Ostadan, F., Deng, N.,and Arango, I., “Energy-Based Method for Liquefaction Potential Evaluation,” Phase I-Feasibility Study, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, Building and Fire Research Laboratory, August ,1996.
    61. Peck, R. B., Hanson, W. E. and Thornburn, T. H., “Foundation Engineering,” Wiley , New York,1974.
    62. Randall, M.J., "The Spectral Theory of Seismic Sources," Bull. Seism. Soc. Am., 63, pp. 1133-1144,1973.
    63. Rumelhart D.E., Hinton, G.E., Williams, R.J., “Learning internal representation by error propagation,” in Parallel Distributed Processing, D. E. Rumelhart and McClelland (Eds), MIT, Press, Cambridge, MA, Vol. 1, pp.318-362, 1986.
    64. Schofield, A. and Wroth, P., “Critical State Soil Mechanics,” McGraw-Hill Book Company, New York, pp. 310,1968.
    65. Seed, H.B., Idriss, I.M., Makdisi, F. and Banerji, N., “Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analysis”, EERC Report 75-29, Earthquake Engineering Research Center, University of California, Berkeley, 1975.
    66. Seed, H.B., Tokimatsu, K., Harder, L.F. and Chung, R.M., “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations”, Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 12, pp. 1425-1445,1985.
    67. Seed, H.B. Peacock, ”Test Procedure for Measuring Soil Liquefaction Characteristics,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1099-1119 ,1971.
    68. Seed, H.B., and Idriss, I.M., “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1249-1273,1971.
    69. Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M., “The Influence of SPT Procedure in Soil Liquefaction Resistance Evaluation,” Report No. EERC 84-15, Earthquake Research Center, University of California, Berkeley, California ,1984.
    70. Simcock, K.J., Davis,R.O., Berrill, J.B., and Mullenger, G., “Cyclic Triaxial Tests with Continuous Measurement of Dissipated Energy,” Geotechnical Testing Journal, 6(1), pp. 35-39,1983.
    71. Streeter, V.L., Wylie, E.B., and Richart, F.E., “Soil Motion Computations by Characteristic Methods,” ASCE National Structural Engineering Conference, San Francisco ,1973.
    72. Tokimatsu, K., and Yoshimi, Y., “Empirical Correlation of Soil Liquefaction Based on SPT N-Value and Fines Content,” Soils and Foundations, JSSMFE, Vol. 23, No. 4, pp. 56-74 ,1983.
    73. Trifunac, M.D., “Empirical Criteria for Liquefaction in Sands via Standard Penetration Tests and Seismic Wave Energy,” Soil Dynamics and Earthquake Engineering, Vol. 14, pp,419-426 ,1995.
    74. Youd, T. L., and Idriss, I. M., “Liquefaction Resistance of Solils: Summary Report from the 1996 NCCER and 1998 NCCER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils,” Journal of Geotechnical and Geoenviromental Engineering, April, pp. 297-313,2001.

    下載圖示 校內:2015-08-25公開
    校外:2015-08-25公開
    QR CODE