| 研究生: |
劉政宏 Liu, Cheng-Hong |
|---|---|
| 論文名稱: |
製備磁性觸媒應用於硼氫化鈉水解產氫系統及放氫後產物再生之研究 Study of Hydrogen Evolution through Hydrolysis of Sodium Borohydride Chemical Fuel over Synthetic Magnetic Catalysts and Regeneration of the Spent Chemical Fuel |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 181 |
| 中文關鍵詞: | 放氫 、硼氫化鈉 、觸媒 、化學氫化物 、鈷 、燃料電池 |
| 外文關鍵詞: | hydrogen generation, sodium borohydride, catalyst, chemical hydride, cobalt, fuel cell |
| 相關次數: | 點閱:68 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用高儲氫密度化學氫化物-硼氫化鈉進行水解放氫反應,是目前具有高潛力的發展技術,而觸媒在系統中扮演非常重要的角色。本研究藉由濕式還原法搭配無電鍍製程,以離子交換樹脂作為載體,製備Co/IR-120以及Ni-Ru/50WX8放氫觸媒。製備方法簡單,對於未來放大製程有極佳的應用性。觸媒主要利用SEM、EDS、Mapping、TGA、XPS、ICP、VSM、XRD等儀器進行鑑定分析。由VSM結果發現,製備之觸媒具有軟鐵磁性質,未來在實驗設計上,可以裡用磁場將觸媒固定後,以連續式的方式提供進料,如此在觸媒的更替上也更為簡便。此外,經由觸媒的表面分析,金屬的鍵結型態,主要是以氧化物形式存在,而非硼化合物。
在液相系統催化方面,使用Co/IR-120以及Ni-Ru/50WX8作為觸媒,可以在不進行系統控溫下,穩定水解硼氫化鈉水溶液,使放氫速率提升至200 mL min-1 g-1,而溫度僅僅由33°C上升至36°C。此外,為了提升整體的氫氣重量密度,本研究製備固態金屬觸媒複合物,以水為限量試劑進行添加,有效提升氫氣重量密度至7.3wt%,達成美國能源局(DOE)所設定在2010年需達成的4.5wt%。在此部分,添加的水量以及內部的反應溫度為重要的實驗參數,也將於內容中加以討論。而副產物生成的形式,也與添加的水量息息相關。而放氫速率可以利用輸水材質的添加,控制水的擴散行為,使得放氫速率可以維持在30-40 mL min-1並維持兩個鐘頭,直接進到2W的質子交換膜燃料電池,成功作為手機的充電器使用。
而為了降低硼氫化鈉的成本,本研究利用水解副產物-偏硼酸鈉與氫化鎂進行高能球磨反應,有效回收硼氫化鈉。研究發現,經由六個鐘頭的球磨反應,產率可高達76%。而各項影響參數也都在研究中加以討論。
Hydrogen generation via hydrolysis reaction from NaBH4, a high hydrogen storage chemical hydride is a promising technique, and catalysts play a vital role in such hydrolysis reaction. Co/IR-120 and Ni-Ru/50WX8 catalysts were prepared using wet chemical reduction method combined with electroless plating process, basing on cation exchange resin beads as supports, of which a simple synthesis method of fabricating catalysts is beneficial for scale up in practice in the future. Surface chemistry of prepared catalysts was characterized by SEM, EDS, Mapping, TGA, XPS, ICP, VSM, XRD and BET. Notably, the magnetic property observed through VSM analysis is convenient for separation of catalysts from the reactor for replacement or fixing the catalysts for continuous reactor device. In addition, the surface compositions of synthesized catalysts were found mainly to be metal oxides, but not metal borides.
As prepared Co/IR-120 and Ni-Ru/50WX8 catalysts can effectively hydrolyze NaBH4 to produce high purity of hydrogen, and 200 mL min-1 g-1 without run-off of temperature, which fell within the 33 and 36C, was achieved in 100 mL of 5 wt% NaBH4 solution containing 5 wt% NaOH solution and 200 mg of Co/IR-120 catalyst. In addition to raise gravimetric hydrogen storage capacity, solid-state NaBH4/metal composites were prepared, reacting with limiting amount of water. 7.3 wt% of gravimetric hydrogen storage capacity was reached, meeting the goal of 4.5 wt% set up by DOE by 2010. Amount of water and temperature variation, important factors affecting the hydrogen production behavior, were also discussed in detail in this study. It is also observed that the formation of by-product is deeply affected by the dosage amount of water during hydrolysis reaction. Furthermore, the rate of hydrogen generation can be effectively stabilized through addition of hydrophobic materials, so that hydrogen generation can be maintained at 30~40 mL min-1 for 2 h, which was directly fed into 2W PEMFC, acting as a charger for cellular phone.
To save the high cost of NaBH4, recycle of spent-NaBH4 was also carried out by reacting MgH2 and NaBO2 through high energy ball-milling process. Over 75% of recycle yield was achieved for 6 h of ball-milling duration. Various parameters such as mole ratios of MgH2/NaBO2 and ball-milling duration were also investigated in this study.
Reference
Agarwala RC, Agarwala V, Sharma R. Electroless Ni-P based nanocoating technology-a review. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 36, 493-515 (2006)
Amendola SC, Sharp-Goldman SL, Janjua MS, Spencer NC, Kelly MT, Petillo PJ, Binder M. A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. International Journal of Hydrogen Energy, 25, 969-975 (2000)
Amendola SC, Sharp-Goldman SL, Janjua MS, Kelly MT, Petillo PJ, Binder M. An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources, 85, 186-189 (2000)
Annemieke WC, van den B, Carlos OA. Materials for hydrogen storage: current research trends and perspectives. Chemical Communications, 668-681 (2008)
Balema VP. Mechanical Processing in Hydrogen Storage R&D. 2009 MRS Fall, Boston, MA (2009)
Baschuk JJ, Li X. Carbon monoxide poisoning of proton exchange membrane fuel cells. International Journal of Energy Research, 25(8), 695-713 (2001)
Bockris JO’M. The economics of hydrogen as a fuel. International Journal of Hydrogen Energy, 6, 223-241 (1981)
Broja G, Schabacher W. Process for the production of alkali metal borohydrides. DE Patent 1108670 (1959)
Brown HC’s biography available, http://www.chem.purdue.edu/hcbrown
Brown HC, Brown CA. New, highly active metal catalysts for the hydrolysis of borohydride. Journal of the American Chemical Society, 84, 14943–14944 (1962)
Çakanyildirim, Ç, Gürü M. Hydrogen cycle with sodium borohydride. International Journal of Hydrogen Energy, 33, 4624-4629 (2008)
Carney D. Automotive design: Chrysler’s concept van gives new meaning to clean fuel.
http://www.popsci.com/cars/article/2002-02/detergent-tank (2011.1.4)
Classen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA. Utilization of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 52, 741-755 (1999)
Colozza AJ. Hydrogen storage for aircraft applications overview. Report No. NASA/CR-211867 (2002)
Cumalioglu I, Ertas A, Ma Y, Maxwell T. State of art: hydrogen storage. Journal of Fuel Cell Science and Technology, 5, (034001-1)-(034001-10) (2008)
Demerci UB, Akdim O, Andrieux J, Hannauer J, Chamoun R, Miele P. Sodium borohydride hydrolysis as hydrogen generator: issues, state of the art and applicability upstream from a fuel cell. Fuel Cells, 10(3), 335-350 (2010)
Demerci UB, Garin F. Ru-based bimetallic alloys for hydrogen generation by hydrolysis of sodium tetrahydroborate. Journal of Alloys and Compounds, 463, 107-111 (2007)
Demirci UB, Miele P. Sodium tetrahydroborate as energy/hydrogen carrier, its history. Comptes Rendus Chimie, 12, 943-950 (2009)
Demirci UB, Miele P. Ten-year efforts and a no-go recommendation for sodium borohydride for on-board automotive hydrogen storage. International Journal of Hydrogen Energy, 34, 2638-2645 (2009)
Deng ZY, Ferreira JMF, Sakka Y. Hydrogen-generation materials for portable applications. Journal of the American Ceramic Society, 91(12), 3825-3834 (2008)
Dong H, Yang H, Ai X, Cha C. Hydrogen production from catalytic hydrolysis of sodium
borohydride solution using nickel boride catalyst. International Journal of Hydrogen Energy, 28, 1095-1100 (2003)
Eberle U, Felderhoff M, Schüth F. Chemical and physical solutions for hydrogen storage. Angewandte Chemie International Edition, 48, 6608-6630 (2009)
El-Malki El-M, Werst D, Doan PE, Sachtler WMH. Coordination of Co2+ cations inside cavities of zeolite MFI with lattice oxygen and adsorbed ligands. Journal of Physical Chemistry B, 104, 5924–5931 (2000)
Environmental Protection Agency of the United State, EPA. http://www.epa.gov/
Fakioğlu E, Yürüm Y, Verziroğlu TN. A review of hydrogen storage systems based on boron and its compounds, 29, 1371-1376 (2004)
Gislon P, Monteleone G, Prosini PP. Hydrogen production from solid sodium borohydride. International Journal of Hydrogen Energy, 34, 929-937 (2009)
Graetz J. New approaches to hydrogen storage. Chemical Society Reviews, 38, 73-82 (2009)
Guella G, Zanchetta C, Patton B, Miotello A. New insights on the mechanism of palladium-catalyzed hydrolysis of sodium borohydride from 11B NMR Measurements. Journal of Physical Chemistry B, 110, 17024-17033 (2006)
Haga T, Kojima Y. Method for manufacturing metal borohydride. JP Patent 2002-241109 (2002)
Heydorn B. By product hydrogen sources and markets. Proceedings of the National Hydrogen Association Meeting, 5th, Washington, DC (1994)
Holbrook KA, Twist PJ. Hydrolysis of borohydride ion catalyzed by metal-boron alloys. Journal of the Chemical Society A, 890-894 (1971)
Hsueh CL, Chen CY, Ku JR, Tsai SF, Hsu YY, Tsau F, Jeng MS. Simple and fast fabrication of polymer template-Ru composite as a catalyst for hydrogen generation from alkaline NaBH4 solution. Journal of Power Sources, 177, 485-492 (2008)
Ingersoll JC, Mani N, Thenmozhiyal JC, Muthaiah A. Catalytic hydrolysis of sodium borohydride by a novel nickel–cobalt–boride catalyst. Journal of Power Sources, 450-457, 173 (2007)
Jeong SU, Kim RK, Cho EA, Kim HJ, Nam SW, Oh IH, Hong SA, Kim SH. A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst. Journal of Power Sources, 144(1), 129-134 (2005)
Juang RS, Lee TS. Oxidative pyrolysis of organic ion exchange resins in the presence of metal oxide catalysts. Journal of Hazardous Materials, 92, 301-314 (2002)
Kaufman CM, Sen B. Hydrogen generation by hydrolysis of sodium tetrahydroborate: effects of acids and transition metals and their salts. Journal of the Chemical Society Dalton Transactions, 307-313 (1985)
Kirubakaran A, Jain S, Nema RK. A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews, 13, 2430-2440 (2009)
Kojima Y, Haga T. Recycling process of sodium metaborate to sodium borohydride International journal of Hydrogen Energy, 28, 989-993 (2003)
Kojima Y, Haga T, Suzuki K, Hayashi H, Matsumoto S, Nakanishi H. Method for manufacturing metal borohydride. JP Patent 2002-193604 (2002)
Kojima Y, Suzuki KI, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y, Hayashi H. Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International journal of Hydrogen Energy, 27, 1029-1034 (2002)
Kojima Y, Suzuki KI, Fukumoto K, Kawai Y, Kimbara M, Nakanishi H, Matsumoto S. Development of 10 kW-scale hydrogen generator using chemical hydride. Journal of Power Sources, 125, 22-26 (2004)
Kojima Y, Kawai Y, Nakanishi H, Matsumoto S. Compressed hydrogen generation using chemical hydride. Journal of Power Sources, 135, 36-41 (2004)
Kreevoy MM, Jacobson RW. The rate of decomposition of NaBH4 in basic aqueous solutions. Ventron Alembic, 15, 2-3 (1979)
Krishnan P, Advani SG, Prasad AK. Cobalt oxides as Co2B catalyst precursors for the hydrolysis of sodium borohydride solutions to generate hydrogen for PEM fuel cells. International journal of Hydrogen Energy, 33, 7095-7102 (2008)
Krishnan P, Hsueh KL, Yim SD. Catalysts for the hydrolysis of aqueous borohydride solutions to produce hydrogen for PEM fuel cells. Applied Catalysis B: Environmental, 77, 206-214 (2007)
Krishnan P, Advani SG, Prasad AJ. Thin-film CoB catalyst templates for the hydrolysis of NaBH4 solution for hydrogen generation. Applied Catalysis B: Environmental, 86, 137-144 (2009)
Kyoto Protocol, United Nations Framework Convention on Climate Change, http://unfccc.int/kyoto_protocol/items/2830.php (2008.10.3)
Lessing PA. Low permeation liner for hydrogen gas storage tanks. Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003. Progress Report (2003)
Liu BH, Li ZP. A review: Hydrogen generation from borohydride hydrolysis reaction. Journal of Power Sources, 187, 527-534 (2009)
Liu BH, Li ZP, Suda S. Solid sodium borohydride as a hydrogen source for fuel cells. Journal of Alloys and Compounds, 468, 493-498 (2009)
Li ZP, Morigazaki N, Liu BH, Suda S. Preparation of sodium borohydride by the reaction of MgH2 with dehydrated borax through ball milling at room temperature. Journal of Alloys and Compounds, 349, 232-236 (2003)
Mallory GO, Hajdu JB. Electroless Plating: Fundamentals and Applications, American Electroplaters and Surface Finishers Society, Orlando, Florida (1990).
Marrero-Alfonso EY, Beaird AM, Davis TA, Matthews MA. Hydrogen generation from chemical hydrides. Industrial & Engineering Chemistry Research, 48(8), 3703 – 3712 (2009)
Marrero-Alfonso EY, Gray JR, Davis TA, Matthews MA. Minimizing water utilization in hydrolysis of sodium borohydride: The role of sodium metaborate hydrates. International Journal of Hydrogen Energy, 32, 4723-4730 (2007)
Midilli A, Ay M, Dincer I, Rosen MA. On hydrogen and hydrogen energy strategies I: current status and needs. Renewable and Sustainable Energy Reviews, 9, 255-271 (2005)
Momirlan M, Verizoglu TN. Current status of hydrogen energy. Renewable and Sustainable Energy Reviews, 6, 141-179 (2002)
Nath K, Das D. Production and storage of hydrogen: Present scenario and future perspective. Journal of Scientific & Industrial Research, 66, 701-709 (2007)
Niemann MU, Srinvasan SS, Phani AR, Kumar A, Goswami DY, Stefanakos EK. Nanomaterials for hydrogen storage applications: a review. Journal of Nanomaterials, article # 950967, vol. 2008, DOI:10.1155 (2008)
Nies NP, Hulbert RW. Solubility isotherms in the system sodium oxide-boric oxide-water. Journal of Chemical & Engineering Data, 12(3), 303–313 (1967)
Ogden JM. Prospect for building a hydrogen energy infrastructure. Annual Review of Energy and the Environment, 24, 227-279 (1999)
Orimo S, Nakamori Y, Eliseo JR, Zuttel A, Jensen CM. Complex hydrides for hydrogen storage. Chemical Reviews, 107, 4111-4132 (2007)
Ott K. in 2009 Annual Merit Review Proceedings – Hydrogen Storage, “DOE Chemical Hydrogen Storage Center of Excellence Overview”, (May, 2009)
Özkar S, Zahmakiran M. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. Journal of Alloys and Compounds, 404-406, 728-731 (2005)
Park JH, Park CH, Nam IS. Characteristics of wet and solid ion exchanged Co–ferrierite catalysts for the reduction of NO using methane. Applied Catalysis A: General, 277, 271–279 (2004).
Patel N, Patton B, Zanchetta C, Fernandes R, Guella G, Kale A, Miotello A. Pd-C powder and thin film catalysts for hydrogen production by hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 33, 287-292 (2008)
Patel N, Fernandes R, Guella G, Kale A, Miotello A, Patton B, Zanchetta C, Ossi PM, Russo V. Pulsed-laser deposition of nanostructured Pd/C thin films A new entry into metal-supported catalysts for hydrogen producing reactions. Applied Surface Science, 254, 1307-1311 (2007)
Peña-Alonso R, Sicurelli A, Callone E, Carturan G, Raj R. A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells. Journal of Power Sources, 165, 315-323 (2007)
Peter B, Woo SC, Martin F, Erica G. Mechanochemistry in the preparation of advanced materials. Acta Montanistica Slovaca, 11, 122-129 (2006)
Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorious C, Pepin L, Ritz C, Saltzman E, Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436 (1999) (doi:10.1038/20859)
Pozio A, De Francesco M, Monteleone G, Oronzio R, Galli S, D’Angelo C, Marrucci M. Apparatus for the production of hydrogen from sodium borohydride in alkaline solution. International Journal of Hydrogen Energy, 33, 51-56 (2008)
Remco Engineering. Control and Treatment Technology for the Metal Finishing Industry -
Ion Exchange USEPA EPA 625/-81-007, 4-10 (1981) (updated by Remco Engineering) http://www.remco.com/ix.htm
Schlesinger HI, Brown HC, Hoekstra HR, Rapp L, Reactions of diborane with alkali Metal hydrides and their addition compounds- new syntheses of borohydrides: sodium and potassium borohydrides. Journal of the Amarican Chemical Society. 75, 199-204 (1953)
Schlesinger HI, Brown HC, Finholt AE. The preparation of sodium borohydride by the high temperature reaction of sodium hydride with borate esters. Journal of the Amarican Chemical Society, 75, 205-209 (1953)
Schlesinger HI, Brown HC, Finholt AE, Gilbreath JR, Hoekstra HR, Hyde EK. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. Journal of the American Chemical Society, 75, 215-219 (1953)
Schubert F, Lang K, Schabacher W. Process for the production of borohydrides. DE Patent 1067005 (1957)
Schweitzer PA. Handbook of separation techniques for chemical engineers. New York NY, McGraw-Hill (1979)
Sloop LJ. Liquid hydrogen as a propulsion fuel. The NASA History Series, Washington (DC) (1978).
Snover J, Wu Y. Recycle of discharged sodium borate fuel. US Patent 6706909 (2004)
Snow RS, Kaye BH, Capes CE, Sresty GC. Chapter 8: Size Reduction and Size Enlargement, in Perry’s Chemical Engineering Handbook, 6th ed. (R. H. Perry, D. Green and J. O. Maloney, eds.), McGraw-Hill: New York, 1984.
Suda S, Morigazaki N, Iwase Y, Li ZP. Production of sodium borohydride by using dynamic behaviors of protide at the extreme surface of magnesium particles. Journal of Alloys and Compounds, 404-406, 643-647 (2005)
Suda S, Sun YM, Liu BH, Zhou Y, Morimitsu S, Arai K, Tsukamoto N, Uchida M, Candra Y, Li ZP. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts. Applied Physics A-Materials Science & Processing, 72, 209-212 (2001)
Troiano E, Vigilante GN, Underwood JH. Experiences and modeling of hydrogen cracking in a thick-walled pressure vessel. Fatigue and Fracture Mechanics, 33, ASTM STP 1417, American Society for Testing and Materials, West Conshohocken, PA (2002)
United Nations Climate Change Conference Cancun - COP 16 / CMP6. http://unfccc.int/2860.php (2010.11.29~2010.12.10)
U.S. Energy Information Administration, Independent statistics and analysis. http://www.eia.gov/energyexplained/index.cfm?page=hydrogen_use
Veziroglu TN, Barbir F. Hydrogen energy technologies. Emerging technology series. Vienna, Austria: UNIDO (1998)
Wang P, Kang XD. Hydrogen-rich boron-containing materials for hydrogen storage. Dalton Transaction, 5400-5413 (2008)
Wang X, Chen HY, Sachtler WMH. Catalytic reduction of NOx by hydrocarbons over Co/ZSM-5 catalysts prepared with different methods. Applied Catalysis B: Environmental, 26, 227–239 (2000)
Wee JH. A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells. Journal of Power Sources, 155, 329-339 (2006)
Working Group I. Fourth Assessment Report of the IPCC: Climate Change 2007. Geneva, Switzerland: Intergovernmental Panel on Climate Change. The physical science basis http://www.ipcc.ch/ (2007)
Wu C, Zhang H, Yi B. Hydrogen generation from catalytic hydrolysis of sodium borohydride for proton exchange membrane fuel cells. Catalysis Today, 93-95, 477-483 (2004)
Wu C, Wu F, Bai Y, Yi B, Zhang H. Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution. Materials Letters, 59, 1748-1751 (2005)
Wu Y, Kelly MT, Ortega JV. Review of chemical processes for the synthesis of sodium borohydride. Millennium Cell Inc. (2004)
Yang J, Sudik A, Wolverton C, Siegel DJ. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chemical Society Reviews, 39, 656-675 (2010)
Ye W, Zhang H, Xu D, Ma L, Yi B. Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst. Journal of Power Sources, 164, 544-548 (2007)
Zhang JS, Delgass WN, Fisher TS, Gore JP. Kinetics of Ru-catalyzed sodium borohydride hydrolysis. Journal of Power Sources, 164, 772-781 (2007)
Zhou L. Progress and problems in hydrogen storage methods. Renewable and Sustainable Energy Reviews, 9, 395-408 (2005)
Zhou J, Ma H, Chen J. Improved hydrogen generation from alkaline NaBH4 solution using carbon-supported Co–B as catalysts. International Journal of Hydrogen Energy, 32, 4711-4716 (2007)
Züttel A, Remhof A, Borgschulte A, Friedrichs O. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A- Mathematical, Physical and Engineering Sciences, 368, 3329-3342 (2010)
Züttel A. Materials for hydrogen storage. Materials today, 6, 24–33 (2003)