簡易檢索 / 詳目顯示

研究生: 徐浩怡
Hsu, Hao-Yi
論文名稱: 土壤之反覆直接剪力行為與模式化
Direct Shear Testing and Modeling on The Behavior of Sand under Cyclic Loading
指導教授: 黃景川
Huang, Ching-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 158
中文關鍵詞: 反覆直接剪力試驗Ramberg-Osgood (R-O)模型Hardin-Drnevich (H-D) 模型
外文關鍵詞: direct shear test, cyclic shear, Ramberg-Osgood model, Hardin-Drnevich model
相關次數: 點閱:87下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用南投縣眉溪中上游之河砂作為試體使用,進行尺寸為長300mm、寬300mm、高250mm之兩種反覆直接剪力試驗,不同單位重γ= 14kN/m^3 、15kN/m^3 、16kN/m^3、不同圍壓與不同水平剪動位移之反覆直接剪力試驗、與不同單位重不同圍壓但固定剪動位移反覆剪動40次之反覆直接剪力試驗,從而得到各個實驗之剪應力與水平位移之關係等數據,再根據實驗數據分別求取兩模型(修正R-O模型、修正H-D模型)所需之參數回歸公式,並依此回歸公式分別建立兩模型,再與先前所作之實驗數據繪圖作比較,用以預測土壤之反覆剪動行為。
    本研究根據實驗結果與模型預測結果得知:一、乾砂直接剪力試驗之尖峰剪應力會隨著圍壓的增加而增加,也會隨著單位重之增加而增加,其尖峰剪應力發生時之位移量也隨圍壓增加而增加。二、變位移之反覆直接剪力試驗之剪應力會隨著圍壓上升而增加,也會隨著位移增大而增加,也會隨著單位重之增加而增加,呈現正相關,而體積變化的部分可以觀察到隨著圍壓增加與單位重之增加,試體體積的總壓縮量也會隨之增加。三、定位移之反覆直接剪力試驗顯示土壤剪動會有硬化之情形但此硬化現象有一定的限制,其會與圍壓呈現正相關之關係。四、修正H-D模型在剪動變位較小試驗之模型預測很好,但剪動變位較大試驗之模型預測有明顯的差距,但若將預測剪動位移加大至過尖峰值後的情況下,修正H-D模型卻有很好的預測量。五、修正R-O預測模型在尖峰值前剪動變位較小試驗有很好的預測結果,但若將預測剪動位移加大至過尖峰值後的情況下,修正R-O預測模型反而會有誤差量的產生。

    Cyclic direct shear tests on a river sand were carried out to study the relationship between shear stress and the shear displacement by using a medium-scale direct shear test apparatus. Two models, namely, the modified Ramberg-Osgood (R-O) model and the modified Hardin-Drnevich (H-D) model, were used to simulate the behavior of sands subject to direct shear. Model parameters were derived based on curve fitting techniques, and the model-generated stress-displacement relationships were compared with the experiment ones. Results of cyclic direct shear test showed that strain hardening is valid up to a shear displacement of about 10mm, regardless of the number of cycles and the density of sands.
    The modified H-D model satisfactorily simulates the behavior of sand subjected cyclic shearing under relatively small displacement states. This is not true when using modified R-O method. Under large displacement condition, (shear displacements larger than 10mm), the modified R-O method outperformed the modified H-D method in the sense that the modified R-O method rendered hysteresis loops similar to those obtained in the tests.

    摘要 I 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究目的 1 1.3 研究內容 1 1.4 研究流程 2 第二章 文獻回顧 3 2.1 直接剪力試驗 3 2.1.1 砂土受剪之力學行為 3 2.1.2 直剪盒尺寸與土壤粒徑影響 6 2.1.3 直剪剪動速度影響 7 2.1.4 正向應力影響 7 2.2 Al-Douri and Poulos(1992) 碳酸鹽砂之靜態與反覆直接剪力試驗 7 2.3 梅新法則(Msaing rule) 8 2.4 Desai and Drumm(1986)土壤反覆直接剪力試驗模型 8 2.5 Duncan and Chang (1970)土壤雙曲線模型 10 2.6 Hardin and Drnevich (1972)土壤反覆直接剪力試驗模型 11 第三章 試驗儀器介紹 13 3.1 試驗系統 13 3.1.1 定位移系統 13 3.1.2 定荷重加載系統 14 3.2 資料量測系統 15 3.2.1 資料收集器 15 3.2.2 變位計 15 3.2.3 荷重元 15 第四章 反覆直接剪力試驗 25 4.1 試驗內容 25 4.1.1 試驗儀器 25 4.1.2 乾砂直接剪力試驗 26 4.1.3 乾砂反覆直接剪力試驗 27 4.1.4 試驗土樣 31 4.2 試驗結果 33 4.2.1 乾砂直接剪力試驗 33 4.2.2 乾砂反覆直接剪力試驗-變位移 38 4.2.2.1變位移試驗(單位重γ= 14 kN/m3) 44 4.2.2.2變位移試驗(單位重γ=15 kN/m3) 49 4.2.2.3變位移試驗(單位重γ=16 kN/m3) 54 4.2.3乾砂反覆直接剪力試驗-定位移 59 4.2.3.1定位移試驗(單位重γ=14 kN/m3) 59 4.2.3.2定位移試驗(單位重γ=15kN/m3) 72 4.2.3.3定位移試驗(單位重γ=16kN/m3) 85 第五章 反覆直接剪力試驗預測模型 98 5.1 修正Ramberg-Osgood預測模型 98 5.1.1 修正R-O模型參數選取 98 5.1.2 修正R-O模型預測結果 111 5.2 修正Hardin and Drnevich 預測模型 125 5.2.1 修正H-D模型參數選取 125 5.2.2 修正H-D模型預測模型 133 5.3 隨機反覆直剪試驗與模型建立 147 5.3.1隨機反覆直剪試驗(對稱) 147 5.3.2隨機反覆直剪試驗(不對稱) 150 5.3.3隨機反覆直剪試驗(剪應力控制) 152 第六章 結論與建議 155 6.1 結論 155 6.2 建議 156 參考文獻 157

    1.Al-Douri, R. H. and Poulos, H. G. (1992) “Static and Cyclic Direct Shear Tests on Carbonate Sands” Geotechnical Testing Journal, GTJODJ, Vol. 15, No. 2, pp. 138-157.
    2.Collios, A., Delmas, P. and Girous, J. P. (1980) “Experiments on Soil Reinforcement with Geotextiles” The Use of Geotextiles for Soil Improvement, ASCE National Convention, Portland, ASCE 80-177, pp. 53-73.
    3.Desai, C. S. and Drumm, E. C. (1986) “Determination of parameters for a model for the cyclic behavior of interfaces” Earthquake Engineering and Structural Dynamics, Vol. 14, 1-18.
    4.Duncan, J. M. and Chang, C. Y. (1970) “Nonlinear analysis of stress and strain in soils” Journal of Soil Mechanics and Foundation Division, Proc. ASCE, Vol. 96, No. SM5, pp. 1629-1653.
    5.Hardin, B. O. and Drnevich V. P. (1972) “Shear modulus and damping in soil” Measurement and Parameter Effect, Proc. ASCE, Vol. 98, No. SM6, pp. 603-624.
    6.Huang, C. C., Hsieh H. Y. and Hsieh, Y. L. (2014) “Hyperbolic models for a 2-D backfill and reinforcement pullout” Geosynthetics International, Vol. 21, No. 3, pp. 168 –178.
    7.Ingold, T. S. (1982) “Some Observations on the Laboratory Measurement of Soil-Geotextile Bond” Geotechnical Testing Journal, Vol.5, No.3, pp. 57-67.
    8.Jewell, R. A. and Wroth, C. P. (1987) ”Direct Shear Test and ReinforcedSand” Geotechnique, Vol. 37, No. 1, pp. 53-68.
    9.Lambe, T. W. and Whitman R. V. (1979), Soil Mechanics SI Version, John Wiley & Sons, New York.
    10.O’Rourke, T. D., Druschel, S. J. and Netravali, A. N. (1990) ”Shear Strength Characteristics of Sand Polymer Interfaces” Journal of Geotechnical Engineering, Vol. 116, No. 3, pp. 451-469.
    11.Williams, N. D. and Houlihan, M. P. (1987) ”Evaluation of Interface Friction7-Properties Between Geosynthetics and Soil” Proceedings of the 87 Geosvnthetics Conference, New Orleans, Vol. 2, pp. 616-627.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE