簡易檢索 / 詳目顯示

研究生: 黃文傑
Huang, Wen-Chieh
論文名稱: 可溶液式高介電常數絕緣層於五環素有機反向器之研究
Solution-processed Barium Titanate and Barium Zirconate Titanate Insulators for Pentacene-based Inverters
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 92
中文關鍵詞: 有機薄膜電晶體五環素反向器電壓轉換曲線負載線分析
外文關鍵詞: organic thin film transistors, pemtacene, inverter, load line analyses
相關次數: 點閱:120下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要搭配溶液式介電材料鈦酸鋇與鋯鈦酸鋇於五環素增強型負載之有機反向器,在本研究中將改善了傳統增強型負載有機反向器之缺點:低增益 、擺幅的限制、及較高消耗功率,所以利用高介電常數材料之特性將其改善元件之特性,並在實驗中發現鋯鈦酸鋇比起鈦酸鋇有更好的特性: 擺幅範圍(63.4%和55.2%)、電壓增益(9.98和8.76)、低操作電壓(-5V)、低消耗功率(1.14和0.86μW),最後利用負載線理論分析進行驗證,可模擬出電壓傳輸曲線,並與實際量測值比較,使實驗數據更為可靠與真實,以期未來能將其製作更為複雜之邏輯電路。

    In this thesis, pentacene-based organic inverters with solution-processed barium zirconate titanate and barium titanate as gate dielectrics are successfully demonstrated. Compared with traditional enhancement-load inverters, this work has been improved several shortcomings, such as low gain, limit the swing, and the high power consumption, which can be achieved by substituting low for high dielectric constant insulators. The enhancement-mode load pentacene-based inverters with solution-processed high permittivity barium titanate and barium zirconate titanate insulators showed larger swing ratio of 55.2 and 63.4%, high gain of 8.76 and 9.98, low operating voltage of -5 V as well as low power dissipation of 0.86 and 1.14 μW, respectively. Finally, to further investigate the superior performance, we also verify this results by load line theorem which can be simulated the voltage transfer curve. The simulated voltage transfer curve also indicated that very good agreements between simulation and experimental results can be achieved.

    摘要 I Abstract II 誌謝 IV Contents VI Table Captions X Figure Captions XI Chapter 1 1 Introduction 1 1-1 1 Introduction to the development of OTFTs 1 1-2 2 Advantages of OTFTs 2 1-3 3 Development of and research on OTFTs worldwide 3 1-4 4 Background and Motivation 4 1-5 6 Organization of the Thesis 6 Chapter 2 7 Organic Semiconductor 7 2-1 7 Physics of organic semiconductors 7 2-1-1 Formation of π electrons and π system [40] 7 2-1-2 Charge transport 12 2-2 18 Organic semiconductor materials 18 2-3 20 Principle of OTFTs and the inverter 20 2-3-1 OTFT 20 2-3-2 Mobility 22 2-3-3 Threshold voltage 23 2-3-4 On/Off current ratio 25 2-3-5 Subthreshold swing 25 2-3-6 Fundamental organic inverter 28 2-3-7 Characteristics of organic inverter [48] 30 2-3-7-1 Fundamental parameters 30 2-3-7-2 Inverter gain 32 2-3-7-3 Noise margin 32 2-3-7-4 Noise margin definition 33 2-3-7-5 Power consumption 34 Chapter 3 38 Equipment and Experiment processes 38 3-1 38 Fabrication equipment 38 3-1-1 Sputter 38 3-1-2 Thermal evaporator 41 3-1-3 Spin coater 42 3-2 44 Experimental processes 44 3-2-1 Substrate cleaning 44 3-2-2 Gate electrode 44 3-2-3 Solution preparation 44 3-2-3-1 BTO 44 3-2-3-2 BZT 45 3-2-4 Gate dielectric layer 46 3-2-4-1 BTO layer 46 3-2-4-2 BZT layer 46 3-2-5 Active layer 46 3-2-6 Inverters and transistors 47 3-2-7 Measurement equipment 47 Chapter 4 55 Results and discussion 55 4-1 56 I-V characteristics 56 4-1-1 Driver and load transistor with BTO insulators 56 4-1-2 Driver and load transistor with BZT insulators 57 4-1-3 Comparison 58 4-2 64 VTCs 64 4-2-1 BTO insulators of the inverter 64 4-2-1-1 Voltage transfer curve 64 4-2-1-2 Noise Margin 65 4-2-1-3 Hysteresis Effect 65 4-2-1-4 Power Consumption 65 4-2-2 The inverter with BZT insulators 66 4-2-2-2 Noise margin 66 4-2-2-3 Hysteresis effect 67 4-2-2-4 Power consumption 67 4-2-3 Comparison 67 4-3 74 Analysis of the theoretical load line diagram 74 4-3-1 Fundamental definition 74 4-3-2 Load line diagram of the proposed organic inverter 75 4-3-3 Theoretical and experimental VTC 75 4-4 80 Comparison with the published pentacene-based inverters 80 Chapter 5 82 Conclusions and Future Prospects 82 5-1 Conclusions 82 5-2 Future prospects 83 REFERENCES 85

    [1] P.G. Le Comber, A.J. Snell, K.D. Mackenzie, and W.E. Spear, 「Applications of a-si field effect transistors in liquid crystal displays and in integrated logic circuits,」 J. de physique, vol. 42, no. C4, pp. 423-432, Oct. 1981.
    [2] A. Tsumura, K. Koezuka, and T. Ando, 「Macromolecular electronic device Field-effect transistor with a polythiophene thin film,」 Appl. Phys. Lett., vol. 49, p. 1210, 1986.
    [3] G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Garnier, 「A field-effect transistor based on conjugated alpha-sexithienyl,」 Solid State Commun., vol. 72, p. 381, 1989.
    [4] H. E. Katz, 「Organic molecular solids as thin film transistor semiconductors,「 J. Mater. Chem., vol. 7, p. 369, 1997.
    [5] C. D. Dimitrakopoulos, and P. R. L. Malenfant, 「Organic thin film transistors for large area electronics,」 Adv. Mater., vol. 14, p. 99, 2002.
    [6] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson,」 Stacked pentacene layer organic thin-film transistors with improved characteristics,」 IEEE Electron. Device Lett., vol. 18, pp. 606-608, 1997.
    [7] H. Sirringhaus, 」Device physics of solution processed organic field effect transistors,」 Adv. Mater., vol. 17, pp. 2411–2425, 2005.
    [8] A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel and H. Seggern, 「Light emitting field effect transistor based on a tetracene thin film,」 Phys. Rev. Lett., vol. 91, pp. 157406, 2003.
    [9] J. Cornil, J. Bredas, J. Zaumseil and H. Sirrinhaus, 「Ambipolar transport in organic conjugated materials, 」 Adv. Mater., Vol. 19, pp. 1791–1799, 2007.
    [10] B. Crone, A. Dodabalapur, Y.-Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz and W. Li, Nature, 「Large-scale complementary circuits based on organic transistors, 」 vol. 403, pp. 521–523, 2000.
    [11] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres and S. D. Theiss, 「Pemtacene –based radio frequency identification circuitry, 」 Appl. Phys. Lett., vol. 82, pp. 3964–3966, 2003.
    [12] Y. Choi, H. Kim, K. Sim, K. Park, C. Im and S. Pyo, Org. Electron., 「Flexible complementary inverter with low- temperature processable polymeric gate dielectric on a plastic substrate, 」 vol. 10, pp. 1209–1216, 2009.
    [13] K. Sim, Y. Choi, H. Kim, S. Cho, S. C. Yoon and S. Pyo, Org.
    Electron.,」 Soluble pentacene thin-film transistor using a high solvent and heat resistive polymeric dielectric with low-temperature processability and its long-term stability, 」, vol. 10, pp. 506–510, 2009.
    [14] J. P. Hong and S. Lee, Angew. Chem.,」 solution-based direct growth of organic crystals on an active channel region for printable bottom-contact organic field-effect transistors, 」, Int. Ed., vol. 48, pp. 3096–3098, 2009.
    [15] H. Yan, Z. Chen, Y. Zheng, C.Newman, J. R. Quinn, F. Dotz,
    M. Kastler and A. Facchetti, 「A high mobility electron transporting polymer for printed transistors, 」, Nature, vol. 457, pp. 679–687, 2009.
    [16] C. Piliego, D. Jarzab, G. Gigli, Z. Chen, A. Facchetti and M. A. Loi, 「 High electron mobility and ambient stability in solution-processed perylene-based organic field-effect transistors, 」, Adv. Mater., vol. 21, pp. 1573–1576, 2009.
    [17]S. R. Forrest, 「 The path to ubiquitous and low-cost organic electronic appliances on plastic, 」 Nature, vol. 428, pp. 911–918, 2004.
    [18] C. D. Dimitrakopoulos and P. R. L. Malenfant, 「 Organic thin film transistors for large area electronics, 」 Adv. Mater., vol. 14, pp. 99–117, 2002.
    [19] C. D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker and K. Meerholz, 「Multi-colour organic light-emitting displays by solution processing, 」 Nature, vol.421, pp. 829–833,2003.
    [20] Y. Fukuda, T. Watanabe, T. Wakimoto, S. Miyaguchi and M. Tsuchida, 「An organic LED display exhibiting pure RGB colors, 」 Synth. Met., vol. 1, pp. 111-112, 2000.
    [21] J. Janata and M. Josowicz, 「Conducting Polymers in Electronic Chemical Sensors, 」 Nat. Mater., vol. 2, pp. 19–24, 2003.
    [22]L. Wang, D. Fine and A. Dodabalapur, 「Nanoscale chemical sensor based on organic thin-flim transistors, 」 Appl. Phys. Lett., vol.85, pp.6386–6388, 2004.
    [23] B. Mukherjee, S. K. Batabyal and A. J. Pal, 「Electronically interacting composite systems for electrical bistability and memory applications, 」 Adv. Mater., vol.19, pp.717–722, 2007.
    [24] B. Mukherjee and M. Mukherjee, 「Nonvolatile memory device based on Ag nanoparticle characteristics improvement, 」 Appl. Phys. Lett., vol. 94, pp. 173510–173512, 2009.
    [25] J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing and P. Drzaic, 「paper-like electronic displays: large-area rubber stamped plastic sheets of electronics and microencapsulated electrophoretic inks, 」 Proc. Natl. Acad. Sci. U. S. A., vol. 98, pp. 4835–4840, 2001.
    [26] Y. Fujisaki, H. Sato, H. Fujikake, Y. Inoue, S. Tokito and T. Kurita, 「Liquid crystal display cells fabricated on plastic substrate driven by low-voltage organic thin film transistor with improved gate insulator and passivation layer, 」 Jpn. J. Appl. Phys., vol. 44, pp. 3728–3732, 2005.
    [27] Crone BK, Dodabalapur A, Sarpeshkar R, Filas RW, Lin YY, Bao Z, O'Neill JH, LiW, katzhe, 「Design and fabrication of organic complementary circuits, 「 J Appl Phys., vol.89, PP.5125–5132, 2001.
    [28] Gelinck GH, Edzer H, Huitema A, Veenendaal EV, Cantatore E, Schrijnemakers L, et al. 「Flexible active-matrix displays and shift registers based on solution-processed organic transistors, 」 Nat Mater., vol. 3, pp. 106–110, 2004.
    [29] Krumm J, Eckert E, Glauert WH, Ullmann A, Fix W, Clemens W. 「A polymer transistor circuits using, 」 PDHTT. IEEE Electron Device Lett., vol. 25, pp.399–401, 2004.
    [30] Gelinck GH, Geuns TCT, Leeuw DM. 「High-performance all-polymer integrated circuits,」 Appl Phys Lett., vol. 77, pp. 1487–1489, 2000.
    [31] Kelley TW, Baude PF, Gerlach C, Ender DE, Muyres D, Haase MA, et al. 「Recent progress in organic electronics: materials, devices, and processes, 」 Chem Mater., vol. 16, pp.4413–4422, 2004.
    [32] Rabaey JM. 「Digital integrated circuits a design perspective,」 New Jersey: Prentice-Hall International Inc; 1996.
    [33] Bao Z. 「 Materials and fabrication needs for low-cost organic transistor circuits, 」 Adv Mater., vol. 12, p. 227, 2000.
    [34] K. Choi, D. K. Hwang, K. Lee, J. H. Kim, and S. Im, 「Pentacene thin-film transistors with polymer/TiOx double-layer dielectrics operating at 3 V,」 Electrochem. Solid-State Lett., vol. 10, no. 3, pp. H114-H116, Jan. 2007.
    [35] C.Y. Wei, F. Adriyanto, Y.J. Lin, Y.C. Li, T.J. Huang, D.W. Chou, and Y.H. Wang, 「Pentacene-based thin-film transistors with a solution-process hafnium oxide insulator,」 IEEE Electron. Device Lett., vol. 30, no. 10, pp. 1039-1041, Sep. 2009.
    [36] P.T. Liu, Y.M. Chou, and P.Y. Yang, 「Dielectric hafnium oxide improved by supercritical carbon dioxide fluid treatment for pentacene thin-film transistors,」 Electrochem. Solid-State Lett., vol. 11, no. 7, pp. H165-H168, Apr. 2008.
    [37] C. Y. Wei, S. H. Kuo, Y. M. Hung, W. C. Huang, F. Adriyanto, and Y. H. Wang, 「High-mobility pentacene-based thin-film transistors with a solution-processed barium titanate insulator,」 IEEE Electron. Device Lett., vol. 32, no. 1, pp. 90-92, Jan. 2011.
    [38] S. Lee, D.-J. Yun, S.-W. Rhee, and K. Yong, 「Atomic layer deposition of hafnium silicate film for high mobility pentacene thin film transistor application,」 J. Mater. Chem., vol. 19, pp. 6857-6864, Jul. 2009.
    [39] S. K. Rout, T. Badapanda, and S. Panigrahi, 「Dielectric study of spin coated nano-thick BaZrxTi1-xO3 film,」 Indian J. Pure Appl. Phys., vol. 45, pp. 749-753, Sep. 2007.
    [40] H. Morkoc, 」Advaced semiconductor and organic nano techniques,」 Academic Press, U. S., 193, 2003.
    [41] Wikipedia, 「Pi Bond.」
    [42] Wikipedia, 「Benzene」
    [43] J. L. Bredas, J. P. Calbert, D. A. da Silva Filho, and J. Cornil, 」Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport,」 PNAS, vol. 99, no. 9, pp. 5804-5809, Dec. 2001.
    [44] 真島 豊, 「 半導體物性」, Tokyo Tech Open Course Ware
    [45] B. A. Paez-Sierra, 「Raman spectroscopy of metal/organic/inorganic hetero structures and pentacene-based OFETs」, Technische Universität Chemnitz, 2007.
    [46] M. Kitamura, and Y. Arakawa, 「Low-voltage-operating complementary inverters with C60 and pentacene transistors on glass substrates,」 Appl. Phys. Lett.., vol. 91, no. 5, pp. 053505-053505-3, Jun. 2007.
    [47] D. Gupta, M. Katiyar, and D. Gupta, 「An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation,」 Org. Electron., vol. 10, pp. 775-784, Apr. 2009.
    [48] D. A. Neamen, McGraw-Hill Education, New York, 1143, 2007.
    [49] H. Xiao, 「Introduction to semiconductor manufacturing technology」, Princeton-Hall Inc., New Jersey, 2001.
    [50] Copyright VG Scienta
    [51] C. H. Hsiao, 「Growth of ii-vi compound semiconductors and their optoelectronic properties - dissertation for doctor of science,」 NCKU, pp. 69-74, 2010.
    [52] Copyright SEADE
    [53] A. S. Sedra, and K. C. Smith, 「Microelectronic circuits,」 Oxford University, New York, pp. 974, 43, 2004.
    [54] J. M. Ball, P. H. Wobkenberg, F. B. Kooistra, J. C. Hummelen, D. M. De Leeuw, D. D.C. Bradley, and T. D. Anthopoulous, 「Complementary circuits based on solution processed low-voltage organic field-effect transistors,」 Synthetic Mel., vol. 159, pp. 2368, Aug. 2009.
    [55] D. A. Neamen, 「Microelectronics circuit analysis and design,」 McGraw-Hill Education, New York, pp. 1149, 2007.
    [56] Technical Laborotory, Murata Manufacturing Company, limited, Nagaoka,, Journal oJ The American Ceramic Society-Saburi, 44, 54, 1961
    [57] Kenji Uchino, Kenji Uchino, Eiji Sadanaga, and Terukiyo Hirose, 「Communications of the American Ceramic Society, 」 72, 1555, 2007.
    [58] S. C. Lim, S. H. Kim, G. H. Kim, J. B. Koo, Y. S. Yang, J. H. Lee, C. H. Ku, and Y.-H. Song, 「High-gain and low hysteresis properties of organic inverters with an UV-photo patternable gate dielectrics,」 Thin Solid Film, vol. 516, pp. 4330-4333, Dec. 2007.
    [59] I. M. Graz, and S. P. Lacour, 「Flexible pentacene organic thin film transistor circuits fabricated directly onto elastic silicone membranes,」 Appl. Phys. Lett., vol. 95, no. 24, p. 243305, Dec. 2009.
    [60] H. Cho, S. Kem, Y. Hong, and C. Lee, 「Characteristics of inverters using pentacene organic thin film transistors with printed Ag electrodes,」 Mol. Cryst. Liq. Cryst., vol. 513, pp. 262-267, Nov. 2009.
    [61] Y. S. Yang, H. Y. Chu, S. H. Kim, S. C. Lim, J. B. Koo, J. H. Lee, C. H. Ku, J.-I. Lee, L.-M. Do, C. S. Hwang, S.-H. K. Park, G. H. Kim, and S. M. Jung, 「Electric characteristics of organic thin-film transistors and logic circuits with a ferroelectric
    gate insulator,」 Thin Solid Film, vol. 515, pp. 7688-7691, Feb. 2007.
    [62] B. Mukherjee, T. J. Shin, K. Sim, M. Mukherjee, J. Lee, S. H. Kim, and S. Pyo, 「Periodic arrays of organic crystals on polymer gate insulator for low-voltage field-effect transistors and complementary inverter,」 J. Mater. Chem., vol. 20, pp. 9047-9051, Jul. 2010

    下載圖示 校內:2013-08-24公開
    校外:2013-08-24公開
    QR CODE