簡易檢索 / 詳目顯示

研究生: 杜同達
Do, Tuong Dat Dinh
論文名稱: 超高性能混凝土噴漿與包覆工法於有無內填磚牆鋼筋混凝土構架之耐震補強
UHPC Shotcrete and Jacketing Methods for Retrofitting RC Frames with and without Masonry Infills
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 344
外文關鍵詞: UltraHigh-Performance Concrete (UHPC), shear-deficient, retrofitting, jacketing, seismic performance, mechanical anisotropy, fiber distribution, X-ray CT, masonry infilled frame, retrofitting masonry infilled frame, OpenSees analysis
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Ultra high-performance concrete (UHPC) offers numerous advantages over normal concrete, including higher tensile and compressive strength, enhanced ductility, and superior durability. As a result, UHPC presents a promising solution for retrofitting and rehabilitating structural elements. Its exceptional strength and ductility make it an ideal choice for enhancing the resistance of severely damaged masonry infilled walls while maintaining their aesthetic appeal. Additionally, UHPC's resistance to corrosion and abrasion impact, combined with its thin thickness requirement, ensures the durability and aesthetics of structural elements. A common retrofitting approach involves using a single- or double-sided UHPC shotcrete jacket with welded wire steel mesh, as it offers convenience compared to traditional plastering methods. However, to overcome the potential shadowing effect during shotcreting and leverage UHPC's superior mechanical properties, the UHPC shotcrete mixture can be applied with steel fibers without the use of steel meshes.
    Shotcreting has been widely used in construction due to its advantages, such as eliminating the need for formwork and reducing construction time. Over the years, various shotcrete compositions using different cementitious composites, including mortar, engineered cementitious composites (ECC), and UHPC, have been proposed and utilized. Leveraging the superior mechanical properties of UHPC, the proposed UHPC shotcrete mixture offers adaptable solutions for retrofitting and rehabilitating structures, particularly in earthquake-prone areas. In this study, shotcreting with UHPC was employed to retrofit masonry infilled walls, using specimens obtained from a Taiwan street house data bank. The retrofitting schemes significantly increased the strength of the masonry infilled wall by more than two-times, with a 1.3 times increase in initial stiffness. Furthermore, UHPC was utilized to retrofit tested frames, resulting in improved strength, displacement capacity, and initial stiffness. The retrofitted frames exhibited a 94% increase in initial stiffness, along with 1.7-, and 1.8- times enhancement in strength and drift capacities, respectively.
    In seismic-prone regions, existing reinforced concrete buildings often lack the necessary details for a ductile response during earthquake shaking, posing significant risks. Therefore, the seismic rehabilitation of these structures is of utmost importance in reducing urban seismic risk. Recently, UHPC has gained popularity for retrofitting and rehabilitating columns due to its exceptional compressive and tensile strength. A successful half-scale bare frame retrofitting scheme was conducted, demonstrating the effectiveness of UHPC in column rehabilitation following an earthquake event.
    The Open System for Earthquake Engineering Simulation (OpenSees) provides powerful tools for capturing the complex behavior of masonry infilled frames retrofitted with double-sided UHPC overlays, as well as retrofitted RC frames. The analysis models within the OpenSees platform reasonably capture the force-displacement relationship of retrofitted masonry infilled frames and retrofitted RC frames, validating the reliability of these analysis models.

    ABSTRACT ii ACKNOWLEDGEMENTS iv Table of Contents v List of Figures x List of Tables xv Chapter 1 Introduction 1 1.1 Background 1 1.2 Objective and scope 4 1.3 Dissertation Organization 5 Chapter 2 Literature Review 7 2.1 Introduction of UHPC 7 2.2 UHPC properties 11 2.2.1 Properties during early stages and over time 11 2.2.2 Mechanical properties 15 2.2.2.1 Compressive strength 15 2.2.2.2 Tensile strength 24 2.2.3 Standard characteristics, design frameworks, and essential performance criteria for UHPC in structural applications [1, 49, 50] 31 2.2.3.1 Proposed UHPC definition [1] 31 2.2.3.2 Suggested examination approaches and design frameworks [1] 32 2.2.3.3 Structural design parameters for UHPC materials [1] 33 2.2.3.4 Analytical model for evaluating a strain-hardening fiber-reinforced concrete (SH-FRC) cracked membrane [50] 34 2.2.4 Durability 37 2.3 Rheological properties, fiber distribution and orientation of UHPC 38 2.3.1 Rheological properties 38 2.3.2 Effect of fiber geometry, length, and volume content of UHPC specimens 40 2.3.3 The distribution and alignment of fibers in UHPC 47 2.4 Retrofitted masonry infilled frame 57 2.4.1 Introduction 57 2.4.2 Micro modeling and meso modeling 60 2.4.3 Macro modeling 61 2.4.4 Single strut modelling 66 2.4.4.1 Evaluation of the width of the equivalent strut 66 2.4.4.2 Backbone curve-Constitutive law 69 2.4.5 Retrofitted masonry wall 76 2.5 Modeling structural and non-structural using OpenSees 80 2.5.1 RC frame modeling 80 2.5.1.1 Distributed-plasticity model with fiber-based elements 80 2.5.1.2 Approaching modeling through lumped plasticity 81 2.5.2 Modeling infill panel in structural analysis 83 2.6 Retrofit and rehabilitation of column 84 2.6.1 Introduction 84 2.6.2 Retrofitting approaches 89 2.6.2.1 Local retrofit 89 2.6.2.2 Global retrofit 98 2.6.3 Strength evaluations 101 2.6.3.1 Local retrofit 101 2.6.3.2 Global retrofit 102 2.7 Conclusions 104 Chapter 3 Rehabilitation of Seismically Damaged Shear-Deficient Columns in RC Frames using a Novel Precast UHPC U-Jacket: Experiments and Simulations 110 3.1 Introduction 111 3.2 Experimental Program 115 3.2.1 As-built RC Frame Specimen 115 3.2.2 Rehabilitated RC Frame Specimen 117 3.2.2.1 Materials for Rehabilitation 117 3.2.2.2 Design of Rehabilitation 119 3.2.2.3 Construction procedure 122 3.2.3 Experimental set up and loading protocol 127 3.3 Experimental results 129 3.3.1 Damage evolution 129 3.3.1.1 As-built frame 129 3.3.1.2 Rehabilitated frame 130 3.3.2 Load-displacement responses 136 3.3.3 Retrofitting reinforcement strain 139 3.4 Discussion 140 3.4.1 Structural stiffness 140 3.4.2 Residual displacement 142 3.4.3 Components of deformation 143 3.4.4 Energy dissipation 153 3.5 Numerical study 154 3.5.1 Lateral deformation components 155 3.5.1.1 Flexural behavior 156 3.5.1.2 Slippage Behavior 158 3.5.1.3 Shear behavior 158 3.5.2 Interaction Model 163 3.5.2.1 RC frame model 165 3.5.2.2 Rehabilitated frame models 166 3.5.3 Numerical results 166 3.6 Conclusions 170 Chapter 4 Sprayed UHPC: Anisotropic Mechanical Properties and Fiber Distribution Characteristics 174 4.1 Introduction 175 4.2 Experimental Program 177 4.2.1 Developing UHPC for effective wet-mix spraying 177 4.2.2 Preparation procedures for cast and sprayed UHPC specimens 178 4.2.3 X-ray computer tomography 182 4.3 Experimental Results 182 4.3.1 Compressive strength 182 4.3.2 Flexural behavior 184 4.4 Evaluating Fiber Distribution and Orientation 188 4.4.1 Image analysis 188 4.4.2 Fiber distribution and orientation 193 4.4.3 Probability density distribution of sprayed UHPC 199 4.5 Discussions 200 4.6 Conclusions 201 Chapter 5 Computational Models for Masonry-Infilled RC Frames Retrofitted with UHPC Shotcrete 204 5.1 Introduction 205 5.2 Experimental program 209 5.2.1 Test specimens 210 5.2.2 Materials 211 5.2.3 Test results 213 5.3 Numerical modeling 214 5.3.1 RC frame modeling 214 5.3.1.1 Prediction of yielding displacement 214 5.3.1.2 Model failures in existing reinforced concrete column 219 5.3.1.3 Ibarra-Medina-Krawinkler model 222 5.3.1.3.1 Stiffness of rotational springs at member ends 222 5.3.1.3.2 Ibarra-Medina-Krawinkler material models in OpenSees platform 224 5.3.1.3.3 Calibration 226 5.3.1.4 RC Frame Models 232 5.3.2 Infill modeling 236 5.3.2.1 Previous models for infill walls 236 5.3.2.1.1 Panagiotakos and Fardis [161] 239 5.3.2.1.2 Teaspa [349] 242 5.3.2.1.3 Decanini et al. [119, 120] 246 5.3.2.2 Analysis process 250 5.3.2.3 Infilled frame model 252 5.3.3 UHPC panels modeling 253 5.3.3.1 Compressive behavior of UHPC 255 5.3.3.2 Tensile behavior of UHPC 256 5.3.3.3 Model retrofitted specimen in OpenSees platform 257 5.4 Analysis Results and Calibration of the Specimens 259 5.4.1 Three components of yield displacement 260 5.4.2 Influence of RC analysis models 261 5.4.3 Infill strut model 265 5.4.3.1 Calibration of distinct models 265 5.4.3.2 Calibration Decanini ’s model 267 5.4.3.3 Evaluation of models 268 5.4.4 UHPC panel behavior 270 5.4.5 Verification of the selected models 273 5.5 Conclusions 277 Chapter 6 Conclusions 280 REFERENCES 288

    1. El-Helou, R. G., Haber, Z. B., & Graybeal, B. A. (2022). Mechanical Behavior and Design Properties of Ultra-High-Performance Concrete. ACI materials journal, 119(1).
    2. Di Trapani, F., G. Macaluso, L. Cavaleri and M. Papia (2015). "Masonry infills and RC frames interaction: literature overview and state of the art of macromodeling approach." European Journal of Environmental and Civil Engineering 19(9): 1059-1095.
    3. Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and concrete research, 25(7), 1501-1511.
    4. Russell, H. G., Graybeal, B. A. (2013). Ultra-high performance concrete: A state-of-the-art report for the bridge community. FHWA Report HRT-13-060, Turner Fairbank Highway Research Center, McLean, VA, June, 171 pp.
    5. Yoo, D.-Y., & Banthia, N. (2016). Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cement and Concrete Composites, 73, 267-280.
    6. M. Schmidt, T. Leutbecher, S. Piotrowski, U. Wiens, The German Guideline for ultra-high performance concrete, in: UHPFRC 2017–Proceedings of the AFGCACI-fib-RILEM International Conference on Ultra-High Performance FibreReinforced Concrete, RILEM Publications, 2017, vol. 2, pp. 543–554.
    7. Lausanne, M.-E. (2016). Recommendation: Ultra-High Performance Fibre Reinforced Cement-based composites (UHPFRC) Construction material, dimensioning und application. Zurich, Switzerland.
    8. Gowripalan, N., & Gilbert, R. (2000). Design guidelines for ductal prestressed concrete beams. Reference Artical, The University of NSW.
    9. Perry, V., & Habel, K. (2017). Standardization of ultra-high performance concrete the Canadian perspective. In: UHPFRC.
    10. López, J. A., Serna, P., & Navarro-Gregori, J. (2017). Advances in the development of the first UHPFRC recommendations in Spain: material classification, design and characterization. Toutlemonde, F., Resplendino, JT Ch.(ed.) UHPFRC, 565-574.
    11. JSCE, Recommendations for design and construction of ultra high strength fiber reinforced concrete structures (Draft), JSCE Guidelines for concrete No. 9, 2006.
    12. Association Française de Génie Civil (AFGC), Ultra-High Performance Fibre Reinforced Concretes, in: Interim Recommendations, AFGC publication, France, ed, 2002.
    13. National addition to Eurocode 2–Design of concrete structures: Specific rules for ultra-high performance fiber-reinforced concrete (UHPFRC), NF P18-710, 2016.
    14. AFGC/SETRA, Ultra High Performance Fibre-reinforced Concretes. Interim Recommendations, SETRA, Bagneux, France, 2002, p. 152; JSCE.
    15. Recommendations for Design and Construction of Ultra-high Strength Fiber Reinforced Concrete Structures (Draft), Japan Society of Civil Engineers, Tokyo, Japan, 2004.
    16. Yoo, D.-Y., Kang, S.-T., & Yoon, Y.-S. (2014). Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC. Construction and Building Materials, 64, 67-81.
    17. Barnett, S. J., Lataste, J.-F., Parry, T., Millard, S. G., & Soutsos, M. N. (2010). Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength. Materials and Structures, 43(7), 1009-1023.
    18. Kang, S.-T., & Kim, J.-K. (2011). The relation between fiber orientation and tensile behavior in an Ultra High Performance Fiber Reinforced Cementitious Composites (UHPFRCC). Cement and concrete research, 41(10), 1001-1014.
    19. Tam, C. M., Tam, V. W., & Ng, K. M. (2012). Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong. Construction and Building Materials, 26(1), 79-89.
    20. Wille, K., Kim, D. J., & Naaman, A. E. (2011). Strain-hardening UHP-FRC with low fiber contents. Materials and Structures, 44(3), 583-598.
    21. Ma, J., Orgass, M., Dehn, F., Schmidt, D., & Tue, N. (2004). Comparative investigations on ultra-high performance concrete with and without coarse aggregates. Paper presented at the International Symposium on Ultra High Performance Concrete, Kassel, Germany.
    22. Wille, K., Naaman, A. E., & Parra-Montesinos, G. J. (2011). Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way. ACI materials journal, 108(1).
    23. Naaman, A.E., 2002, “Toughness, Ductility , Surface Energy and Deflection-Hardening FRC Composites,” Proceeding of the JCI international Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)-Application and Evaluation (DFRCC-Application and Evaluation (DFRCC-02), Takayama, Japan, pp. 33-57.
    24. C. ASTM, 403. Standard Test Method for Time of Setting of Concrete Mixture by Penetration Resistance. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2008, p. 7.
    25. Yoo, D.-Y., Park, J.-J., Kim, S.-W., & Yoon, Y.-S. (2013). Early age setting, shrinkage and tensile characteristics of ultra high performance fiber reinforced concrete. Construction and Building Materials, 41, 427-438.
    26. Graybeal, B. A. (2007). Compressive behavior of ultra-high-performance fiber-reinforced concrete. ACI materials journal, 104(2), 146.
    27. Zhang, Y., Zhang, W., She, W., Ma, L., & Zhu, W. (2012). Ultrasound monitoring of setting and hardening process of ultra-high performance cementitious materials. Ndt & E International, 47, 177-184.
    28. Habel, K., Viviani, M., Denarié, E., & Brühwiler, E. (2006). Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC). Cement and concrete research, 36(7), 1362-1370.
    29. Yoo, D.-Y., Min, K.-H., Lee, J.-H., & Yoon, Y.-S. (2014). Shrinkage and cracking of restrained ultra-high-performance fiber-reinforced concrete slabs at early age. Construction and Building Materials, 73, 357-365.
    30. Jonasson, J.-E. (1984). Slipform construction-calculations for assessing protection against early freezing. Publication of: Cement and Concrete Research Institute(4.84).
    31. ACI Committee 239, “Ultra-High-Performance Concrete: An Emerging Technology Report (ACI 239R-18),” American Concrete Institute, Farmington Hills, MI, 2018, 21 pp.
    32. Habel, K. (2004). Structural behaviour of elements combining ultra-high performance fibre reinforced concretes (UHPFRC) and reinforced concrete. Doctoral thesis No. 3036, EPFL, Lausane, Switzeland.
    33. ACI Committee 363, 1992, “Report on High-Strength Concrete (ACI 363R-92),” American Concrete Institute, Farmington Hills, Mich., 55 pp.
    34. AASHTO T 397, “Standard Method of Test for Uniaxial Tensile Response of Ultra-High Performance Concrete,” American Association of State Highway Transportation Officials, Washington, DC, 2022.
    35. Huang, H., Gao, X., Li, L., & Wang, H. (2018). Improvement effect of steel fiber orientation control on mechanical performance of UHPC. Construction and Building Materials, 188, 709-721.
    36. Haber, Z.; De La Varga, I.; Graybeal, B.; Nakashoji, B.; and El-Helou, R., “Properties and Behavior of UHPC-Class Materials,” Report No. FHWA-HRT-18-036, Federal Highway Administration, McLean, VA, 2018.
    37. Graybeal, B. A., “Material Property Characterization of Ultra-High Performance Concrete,” Report No. FHWA-HRT-06-103, Federal Highway Administration, McLean, VA, 2006.
    38. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19),” American Concrete Institute, Farmington Hills, MI, 2019, 624 pp.
    39. AASHTO, “AASHTO LRFD Bridge Design Specifications, 9th Edition,” American Association of State Highway and Transportation Officials, Washington, DC, 2020.
    40. Wille, K., Naaman, A. E., El-Tawil, S., & Parra-Montesinos, G. J. (2012). Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing. Materials and Structures, 45(3), 309-324.
    41. Ouyang, X., Wu, Z., Shan, B., Chen, Q., & Shi, C. (2022). A critical review on compressive behavior and empirical constitutive models of concrete. Construction and Building Materials, 323, 126572.
    42. Carreira, D. J., & Chu, K.-H. (1985). Stress-strain relationship for plain concrete in compression, ACI Journal 82 (1985) 797–804.
    43. Graybeal, B. A. (2014). Tensile mechanical response of ultra-high-performance concrete. Advances in civil engineering materials, 4(2), 62-74.
    44. Naaman AE, Reinhardt HW. Setting the stage: toward performance based classification of FRC composites. In: Proceedings of 4th RILEM symposium on high performance fiber reinforced cement, composites (HPFRCC4); 2003. p. 1– 4.
    45. Wille, K., El-Tawil, S., & Naaman, A. E. (2014). Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cement and Concrete Composites, 48, 53-66.
    46. Dugat, J., Roux, N., & Bernier, G. (1996). Mechanical properties of reactive powder concretes. Materials and Structures, 29(4), 233-240.
    47. Wille, K., & Naaman, A. E. (2012). Pullout Behavior of High-Strength Steel Fibers Embedded in Ultra-High-Performance Concrete. ACI materials journal, 109(4).
    48. Park, S. H., Kim, D. J., Ryu, G. S., & Koh, K. T. (2012). Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement and Concrete Composites, 34(2), 172-184.
    49. El-Helou, R. G., & Graybeal, B. A. (2022). Shear behavior of ultrahigh-performance concrete pretensioned bridge girders. Journal of Structural Engineering, 148(4), 04022017.
    50. El-Helou, R. G., & Graybeal, B. A. (2023). Shear Design of Strain-Hardening Fiber-Reinforced Concrete Beams. Journal of Structural Engineering, 149(2), 04022234.
    51. ASTM C39/C39M-18, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” ASTM International, West Conshohocken, PA, 2018.
    52. ASTM C469/C469M-14, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” ASTM International, West Conshohocken, PA, 2014.
    53. ASTM C1856/C1856M-17, “Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete,” ASTM International, West Conshohocken, PA, 2017, 4 pp. 39. El-Helou, R. G., Haber, Z. B., & Graybeal, B. A. (2022). Mechanical Behavior and Design Properties of Ultra-High-Performance Concrete. ACI materials journal, 119(1).
    54. Vecchio, F. J. and M. P. Collins (1986). "The modified compression-field theory for reinforced concrete elements subjected to shear." ACI J. 83(2): 219-231.
    55. Schmidt, M., & Fehling, E. (2005). Ultra-high-performance concrete: research, development and application in Europe. ACI Spec. Publ, 228(1), 51-78.
    56. Roux, N., Andrade, C., & Sanjuan, M. (1996). Experimental study of durability of reactive powder concretes. Journal of materials in civil engineering, 8(1), 1-6.
    57. Cheyrezy, M., Maret, V., & Frouin, L. (1995). Microstructural analysis of RPC (reactive powder concrete). Cement and concrete research, 25(7), 1491-1500.
    58. Charron, J.-P., Denarié, E., & Brühwiler, E. (2007). Permeability of ultra high performance fiber reinforced concretes (UHPFRC) under high stresses. Materials and Structures, 40(3), 269-277.
    59. Thomas, M., Green, B., O’Neal, E., Perry, V., Hayman, S., & Hossack, A. (2012). Marine performance of UHPC at Treat Island. Paper presented at the Proceedings of the 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel, Germany.
    60. Meng, W., & Khayat, K. H. (2017). Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar. Composites Part B: Engineering, 117, 26-34.
    61. Beaupre, D. (1994). Rheology of high performance shotcrete. University of British Columbia.
    62. Kim, Y. Y., Kong, H.-J., & Li, V. C. (2003). Design of engineered cementitious composite suitable for wet-mixture shotcreting. Materials Journal, 100(6), 511-518.
    63. Khayat, K. H., Meng, W., Vallurupalli, K., & Teng, L. (2019). Rheological properties of ultra-high-performance concrete—An overview. Cement and concrete research, 124, 105828.
    64. Yun, K.-K., Choi, P., & Yeon, J. H. (2015). Correlating rheological properties to the pumpability and shootability of wet-mix shotcrete mixtures. Construction and Building Materials, 98, 884-891.
    65. Yun, K.-K., Choi, S.-Y., & Yeon, J. H. (2015). Effects of admixtures on the rheological properties of high-performance wet-mix shotcrete mixtures. Construction and Building Materials, 78, 194-202.
    66. Mantawy, P.-I. (2020). Optimization of advanced cementitious material overlays and upgrades, including shotcrete. Florida International University.
    67. ACI Committee 506, “Guide to Shotcrete (ACI 506R-05),” American Concrete Institute, Farmington Hills, MI, 2005, 40 pp.
    68. Gong, J., Ma, Y., Fu, J., Hu, J., Ouyang, X., Zhang, Z., & Wang, H. (2022). Utilization of fibers in ultra-high performance concrete: A review. Composites Part B: Engineering, 109995.
    69. Du, J., Meng, W., Khayat, K. H., Bao, Y., Guo, P., Lyu, Z., . . . Wang, H. (2021). New development of ultra-high-performance concrete (UHPC). Composites Part B: Engineering, 224, 109220.
    70. Abdallah, S., Fan, M., & Rees, D. W. (2018). Bonding mechanisms and strength of steel fiber–reinforced cementitious composites: overview. Journal of materials in civil engineering, 30(3), 04018001.
    71. Naaman, A. E. (2003). Engineered steel fibers with optimal properties for reinforcement of cement composites. Journal of advanced concrete technology, 1(3), 241-252.
    72. Yoo, D.-Y., & Yoon, Y.-S. (2015). Structural performance of ultra-high-performance concrete beams with different steel fibers. Engineering Structures, 102, 409-423.
    73. Yoo, D.-Y., Zi, G., Kang, S.-T., & Yoon, Y.-S. (2015). Biaxial flexural behavior of ultra-high-performance fiber-reinforced concrete with different fiber lengths and placement methods. Cement and Concrete Composites, 63, 51-66.
    74. Yunsheng, Z., Wei, S., Sifeng, L., Chujie, J., & Jianzhong, L. (2008). Preparation of C200 green reactive powder concrete and its static–dynamic behaviors. Cement and Concrete Composites, 30(9), 831-838.
    75. Kang, S.-T., Lee, Y., Park, Y.-D., & Kim, J.-K. (2010). Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber. Composite structures, 92(1), 61-71.
    76. Yoo, D.-Y., Lee, J.-H., & Yoon, Y.-S. (2013). Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Composite structures, 106, 742-753.
    77. Abbas, S., Soliman, A. M., & Nehdi, M. L. (2015). Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages. Construction and Building Materials, 75, 429-441.
    78. Meng, W., & Khayat, K. H. (2018). Effect of hybrid fibers on fresh properties, mechanical properties, and autogenous shrinkage of cost-effective UHPC. J. Mater. Civ. Eng, 30(4), 04018030.
    79. Le Hoang, A., & Fehling, E. (2017). Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete. Construction and Building Materials, 153, 790-806.
    80. Yang, I. H., Joh, C., & Kim, B.-S. (2010). Structural behavior of ultra high performance concrete beams subjected to bending. Engineering Structures, 32(11), 3478-3487.
    81. Ferrara, L., Ozyurt, N., & Di Prisco, M. (2011). High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow induced” fibre orientation. Materials and Structures, 44(1), 109-128.
    82. Kwon, S. H., Kang, S.-T., Lee, B. Y., & Kim, J.-K. (2012). The variation of flow-dependent tensile behavior in radial flow dominant placing of Ultra High Performance Fiber Reinforced Cementitious Composites (UHPFRCC). Construction and Building Materials, 33, 109-121.
    83. Boulekbache, B., Hamrat, M., Chemrouk, M., & Amziane, S. (2010). Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Construction and Building Materials, 24(9), 1664-1671.
    84. Wille, K., & Parra-Montesinos, G. J. (2012). Effect of Beam Size, Casting Method, and Support Conditions on Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete. ACI materials journal, 109(3).
    85. Kang, S. T., Lee, B. Y., Kim, J.-K., & Kim, Y. Y. (2011). The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete. Construction and Building Materials, 25(5), 2450-2457.
    86. Kang, S.-T., & Kim, J.-K. (2012). Numerical simulation of the variation of fiber orientation distribution during flow molding of ultra high performance cementitious composites (UHPCC). Cement and Concrete Composites, 34(2), 208-217.
    87. Maya Duque, L. F., & Graybeal, B. (2017). Fiber orientation distribution and tensile mechanical response in UHPFRC. Materials and Structures, 50, 1-17.
    88. Doyon-Barbant, J., & Charron, J.-P. (2018). Impact of fibre orientation on tensile, bending and shear behaviors of a steel fibre reinforced concrete. Materials and Structures, 51, 1-16.
    89. Qiu, M., Zhang, Y., Qu, S., Zhu, Y., & Shao, X. (2020). Effect of reinforcement ratio, fiber orientation, and fiber chemical treatment on the direct tension behavior of rebar-reinforced UHPC. Construction and Building Materials, 256, 119311.
    90. C. ASTM, 1550-12a. Standard Test Method for Flexural Toughness of Fiberreinforced Concrete (Using Centrally Loaded Round Panel), Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2012, p. 14.
    91. Zi, G., Oh, H., & Park, S.-K. (2008). A novel indirect tensile test method to measure the biaxial tensile strength of concretes and other quasibrittle materials. Cement and concrete research, 38(6), 751-756.
    92. Jeffery, G. B. (1922). The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 102(715), 161-179.
    93. Lee, B. Y., Kim, J.-K., & Kim, Y. Y. (2010). Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics. Computers & Concrete, 7(5), 455-468.
    94. Yoo, D.-Y., Kang, S.-T., Banthia, N., & Yoon, Y.-S. (2017). Nonlinear finite element analysis of ultra-high-performance fiber-reinforced concrete beams. International Journal of Damage Mechanics, 26(5), 735-757.
    95. Wille, K., Tue, N. V., & Parra-Montesinos, G. J. (2014). Fiber distribution and orientation in UHP-FRC beams and their effect on backward analysis. Materials and Structures, 47(11), 1825-1838.
    96. Ramakrishnan, V., Cole W., Dahl L., & Shrader E. (1981). Comparative evaluation of fiber shotcrete. Concrete International, 3(1), 59-69.
    97. Cengiz, O., & Turanli, L. (2004). Comparative evaluation of steel mesh, steel fibre and high-performance polypropylene fibre reinforced shotcrete in panel test. Cement and concrete research, 34(8), 1357-1364.
    98. Zhu, H., Yu, K., & Li, V. C. (2021). Sprayable engineered cementitious composites (ECC) using calcined clay limestone cement (LC3) and PP fiber. Cement and Concrete Composites, 115, 103868.
    99. Segura-Castillo, L., Cavalaro, S. H., Goodier, C., Aguado, A., & Austin, S. (2018). Fibre distribution and tensile response anisotropy in sprayed fibre reinforced concrete. Materials and Structures, 51(1), 1-12.
    100. Hung, C.-C., El-Tawil, S., & Chao, S.-H. (2021). A review of developments and challenges for UHPC in structural engineering: Behavior, analysis, and design. Journal of Structural Engineering, 147(9), 03121001.
    101. Doiron, G. (2019). UHPC Shotcrete-A New Way to Install UHPC. Paper presented at the International Interactive Symposium on Ultra-High Performance Concrete.
    102. Federal Highway Administration, Design and Construction of UHPC-Based Bridge Preservation and Repair Solutions (Washington, DC: 2022).
    103. Crisafulli, F. J., Carr, A. J., & Park, R. (2000). Analytical modelling of infilled frame structures: A general review. Bulletin of the New Zealand society for earthquake engineering, 33(1), 30-47.
    104. Shing, P. B., & Mehrabi, A. B. (2002). Behaviour and analysis of masonry‐infilled frames. Progress in Structural Engineering and Materials, 4(3), 320-331.
    105. Asteris, P. G., Antoniou, S., Sophianopoulos, D. S., & Chrysostomou, C. Z. (2011). Mathematical macromodeling of infilled frames: state of the art. Journal of Structural Engineering, 137(12), 1508-1517.
    106. Asteris, P. G., Cotsovos, D. M., Chrysostomou, C., Mohebkhah, A., & Al-Chaar, G. (2013). Mathematical micromodeling of infilled frames: state of the art. Engineering Structures, 56, 1905-1921.
    107. Tarque N, Candido L, Camata G, Spacone E. (2015). Masonry infilled frame structures: state-of-the-art review of numerical modelling. Earthquakes and structures, 8(3), 733-759.
    108. Noh, N. M., Liberatore, L., Mollaioli, F., & Tesfamariam, S. (2017). Modelling of masonry infilled RC frames subjected to cyclic loads: State of the art review and modelling with OpenSees. Engineering Structures, 150, 599-621.
    109. Kakaletsis, D., & Karayannis, C. (2007). Experimental investigation of infilled R/C frames with eccentric openings. Structural Engineering and Mechanics, 26(3), 231-250.
    110. Kakaletsis, D. J., & Karayannis, C. G. (2009). Experimental Investigation of Infilled Reinforced Concrete Frames with Openings. ACI Structural Journal, 106(2).
    111. Al-Chaar, G., Lamb, G. E., & Issa, M. (2003). Effect of openings on structural performance of unreinforced masonry infilled frames. ACI Special Publications, 211, 247-262.
    112. Stavridis, A. (2009). Analytical and experimental study of seismic performance of reinforced concrete frames infilled with masonry walls: University of California, San Diego.
    113. Tasnimi, A. A., & Mohebkhah, A. (2011). Investigation on the behavior of brick-infilled steel frames with openings, experimental and analytical approaches. Engineering Structures, 33(3), 968-980.
    114. Mosalam, K. M., White, R. N., & Gergely, P. (1997). Static response of infilled frames using quasi-static experimentation. Journal of Structural Engineering, 123(11), 1462-4169.
    115. Zhai, C., Kong, J., Wang, X., & Chen, Z. (2016). Experimental and finite element analytical investigation of seismic behavior of full-scale masonry infilled RC frames. Journal of Earthquake Engineering, 20(7), 1171-1198.
    116. Lima, C., De Stefano, G., & Martinelli, E. (2014). Seismic response of masonry infilled RC frames: practice-oriented models and open issues. Earthquakes and structures, 6(4), 409-436.
    117. Lourenço PJBB. Computational strategies for masonry structures PhD Thesis. Portugal: University of Porto; 1996.
    118. Campione, G., Cavaleri, L., Macaluso, G., Amato, G., & Di Trapani, F. (2015). Evaluation of infilled frames: an updated in-plane-stiffness macro-model considering the effects of vertical loads. Bulletin of Earthquake Engineering, 13(8), 2265-2281.
    119. Decanini, L. D., and G. E. Fantin. 1986. “Modelos simplificados de la mampostería incluidas en porticos. Características de rigidez y resistencia lateral en estado límite.” In Proc., 6th Jornadas Argentinas de Ingenierìa Estructural, 817–836. Buenos Aires, Argentina: Asociacion de Ingenieros Estructurales (in Spanish).
    120. Decanini LD, Mollaioli F, Mura A Saragoni R. Seismic performance of masonry infilled R/C frames. In: 13th World Conference on Earthquake Engineering; 2004.
    121. Dolšek, M., & Fajfar, P. (2008). The effect of masonry infills on the seismic response of a four-storey reinforced concrete frame—a deterministic assessment. Engineering Structures, 30(7), 1991-2001.
    122. Mehrabi, A. B., Benson Shing, P., Schuller, M. P., & Noland, J. L. (1996). Experimental evaluation of masonry-infilled RC frames. Journal of Structural Engineering, 122(3), 228-237.
    123. Skafida, S., Koutas, L., & Bousias, S. (2014). Analytical modeling of masonry infilled RC frames and verification with experimental data. Journal of Structures, 2014.
    124. Chiou, Y.-J., Tzeng, J.-C., & Liou, Y.-W. (1999). Experimental and analytical study of masonry infilled frames. Journal of Structural Engineering, 125(10), 1109-1117.
    125. Liberatore, L., Bruno, M., AlShawa, O., Pasca, M., & Sorrentino, L. (2016). Finite-discrete element modelling of masonry infill walls subjected to out-of-plane loads. ECCOMAS Congr 2016-Proc 7th Eur Congr Comput Methods Appl Sci Eng, 3.
    126. Attard, M. M., Nappi, A., & Tin-Loi, F. (2007). Modeling fracture in masonry. Journal of Structural Engineering, 133(10), 1385-1392.
    127. Stavridis, A., & Shing, P. (2010). Finite-element modeling of nonlinear behavior of masonry-infilled RC frames. Journal of Structural Engineering, 136(3), 285-296.
    128. Asteris, P., Cavaleri, L., Di Trapani, F., & Tsaris, A. (2017). Numerical modelling of out-of-plane response of infilled frames: State of the art and future challenges for the equivalent strut macromodels. Engineering Structures, 132, 110-122.
    129. Di Trapani, F., Shing, P., & Cavaleri, L. (2018). Macroelement model for in-plane and out-of-plane responses of masonry infills in frame structures. Journal of Structural Engineering, 144(2), 04017198-04017198.
    130. Di Trapani, F., Vizzino, A., Tomaselli, G., Sberna, A. P., & Bertagnoli, G. (2022). A new empirical formulation for the out-of-plane resistance of masonry infills in reinforced concrete frames. Engineering Structures, 266, 114422.
    131. Polyakov, S. (1960). On the interaction between masonry filler walls and enclosing frame when loaded in the plane of the wall. Translations in earthquake engineering, 2(3), 36-42.
    132. Holmes, M. (1961). Steel frames with brickwork and concrete infilling. proceedings of the Institution of civil Engineers, 19(4), 473-478.
    133. Amato, G., Cavaleri, L., Fossetti, M., & Papia, M. (2008). Infilled frames: influence of vertical loads on the equivalent diagonal strut model. Procedings of 14th WCEE, Beijing, China. CD-ROM, Paper, 05-01.
    134. Amato, G., Fossetti, M., Cavaleri, L., & Papia, M. (2009). An updated model of equivalent diagonal strut for infill panels. Paper presented at the Proceedings of Eurocode, vol. 6, p. 119-28.
    135. Sattar, S. (2013). Influence of masonry infill walls and other building characteristics on seismic collapse of concrete frame buildings. University of Colorado at Boulder,
    136. Thiruvengadam, V. (1985). On the natural frequencies of infilled frames. Earthquake engineering & structural dynamics, 13(3), 401-419.
    137. Al-Chaar, G. K. (2002). Evaluating strength and stiffness of unreinforced masonry infill structures. Rep. No. ERDC/CERL TR-02-1, U.S. Army Corps of Engineers, Champaign, IL.
    138. El-Dakhakhni, W. W., Hamid, A. A., & Elgaaly, M. (2004). Strength and stiffness prediction of masonry infill panels. Paper presented at the 13th World Conference on Earthquake Engineering, Vancouver, BC Canada.
    139. Crisafulli, F. J. (1997). Seismic behaviour of reinforced concrete structures with masonry infills. PhD Thesis. University of Canterbury.
    140. Mondal, G., & Jain, S. K. (2008). Lateral stiffness of masonry infilled reinforced concrete (RC) frames with central opening. Earthquake spectra, 24(3), 701-723.
    141. Asteris, P. G. (2003). Lateral stiffness of brick masonry infilled plane frames. Journal of Structural Engineering, 129(8), 1071-1079.
    142. Decanini, L. D., Liberatore, L., & Mollaioli, F. (2014). Strength and stiffness reduction factors for infilled frames with openings. Earthquake Engineering and Engineering Vibration, 13(3), 437-454.
    143. Crisafulli, F. J., & Carr, A. J. (2007). Proposed macro-model for the analysis of infilled frame structures. Bulletin of the New Zealand society for earthquake engineering, 40(2), 69-77.
    144. Sattar, S., & Liel, A. B. (2016). Seismic performance of nonductile reinforced concrete frames with masonry infill walls—I: development of a strut model enhanced by finite element models. Earthquake spectra, 32(2), 795-818.
    145. Burton, H., & Deierlein, G. (2014). Simulation of seismic collapse in nonductile reinforced concrete frame buildings with masonry infills. Journal of Structural Engineering, 140(8), A4014016.
    146. McKenna, F., G. L. Fenves and M. H. Scott (2000). "Open system for earthquake engineering simulation." University of California, Berkeley, CA.
    147. Smith, B. S. (1967). Methods for predicting the lateral stiffness and strength of multi-storey infilled frames. Building Science, 2(3), 247-257.
    148. Mainstone, R.J. (1971), “On the stiffness and strengths of infilled frames”, Proceedings of the Institution of Civil Engineers, Supplement IV, 49(2), 57-90. Garston, United Kingdom.
    149. Mainstone, R.J. (1974), “Supplementary note on the stiffness and strengths of infilled frames”, Current Paper CP 13/74. Garston, Watford, U.K.
    150. FEMA 274 (1997). Commentary to NEHRP guidelines for the seismic rehabilitation of buildings. Washington, DC: Building Seismic Safety Council, Federal Emergency Management Agency.
    151. FEMA 306 (1998). Evaluation of earthquake damaged concrete and masonry wall buildings. Federal Emergency Management Agency, Redwood City, California, USA.
    152. Bazan, E. and Meli, R. (1980), “Seismic analysis of structures with masonry walls”, Proceedings of 7th WCEE, 5, 633-640. Istanbul, Turkey.
    153. Hendry, A.W. (1981), Structural Brickwork. MacMillan Press, Ltd., Ed. London.
    154. Tassios, T.P. (1984), “Masonry Infill and R/C Walls Under Cyclic Actions”, (An invited state-of-the-art report). Proceedings of the 3rd International Symposium on Wall Structures. Warsaw, Poland.
    155. Liauw, T.C. and Kwan, K.H. (1984). Nonlinear behaviour of non-integral infilled frames. Computers & structures, 18(3), 551-560.
    156. Paulay, T., & Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings (Vol. 768): Wiley New York.
    157. Durrani, A. J., & Luo, Y. (1994). Seismic retrofit of flat-slab buildings with masonry infills. Proceedings of the NCEER Workshop on Seismic Response of Masonry Infills, Technical Report NCEER-94-0004, D.P. Abrams, pp. 1-8. San Francisco, California, USA.
    158. Flanagan, R. D., & Bennett, R. M. (1999). Bidirectional behavior of structural clay tile infilled frames. Journal of Structural Engineering, 125(3), 236-244.
    159. Cavaleri, L., Fossetti, M., & Papia, M. (2005). Infilled frames: developments in the evaluation of cyclic behaviour under lateral loads. Structural engineering and mechanics: An international journal, 21(4), 469-494.
    160. Papia, M., & Cavaleri, L. (2001). Effetto irrigidente dei tamponamenti nei telai in ca. Paper presented at the Atti della 2a conferenza plenaria “La sicurezza delle strutture in calcestruzzo armato sotto azioni sismiche con riferimento ai criteri progettuali di resistenza al collasso e di limitazione del danno dell’eurocodice (in Italian).
    161. Panagiotakos, T., & Fardis, M. (1996). Seismic response of infilled RC frames structures. Paper presented at the 11th world conference on earthquake engineering.
    162. Cavaleri, L., & Di Trapani, F. (2014). Cyclic response of masonry infilled RC frames: Experimental results and simplified modeling. Soil Dynamics and Earthquake Engineering, 65, 224-242.
    163. Lowes, L. N., Mitra, N., & Altoontash, A. (2003). A beam-column joint model for simulating the earthquake response of reinforced concrete frames.
    164. Klingner, R. E., & Bertero, V. V. (1978). Earthquake resistance of infilled frames. Journal of the structural division, 104(6), 973-989.
    165. Žarnić, R., & Gostič S.. Masonry infilled frames as an effective structural subassemblage. In: Proceedings of the international workshop on seismic design methodologies for the next generation of codes; 1997.
    166. ASCE/SEI (2014). Seismic Evaluation and Retrofit of Existing Buildings, ASCE Standard ASCE/SEI 41-13, American Society of Civil Engineers, Reston, VA, USA.
    167. Dehghani, A., Nateghi-Alahi, F., & Fischer, G. (2015). Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames. Engineering Structures, 105, 197-208.
    168. Triantafillou, T. C. (1998). Strengthening of masonry structures using epoxy-bonded FRP laminates. Journal of Composites for Construction, 2(2), 96-104.
    169. Koutas, L., Triantafillou, T., & Bousias, S. (2015). Analytical modeling of masonry-infilled RC frames retrofitted with textile-reinforced mortar. Journal of Composites for Construction, 19(5), 04014082.
    170. Sevil, T., Baran, M., Bilir, T., & Canbay, E. (2011). Use of steel fiber reinforced mortar for seismic strengthening. Construction and Building Materials, 25(2), 892-899.
    171. Kyriakides, M. (2011). Seismic retrofit of unreinforced masonry infills in non-ductile reinforced concrete frames using engineered cementitious composites: Stanford University.
    172. Kyriakides, M., & Billington, S. L. (2014). Cyclic response of nonductile reinforced concrete frames with unreinforced masonry infills retrofitted with engineered cementitious composites. Journal of Structural Engineering, 140(2), 04013046.
    173. Koutromanos, I., & Shing, P. B. (2014). Numerical study of masonry-infilled RC frames retrofitted with ECC overlays. Journal of Structural Engineering, 140(7), 04014045.
    174. Sleiman, E. (2021). Seismic retrofitting of existing buildings by strengthening of masonry infill walls. Université de Lyon,
    175. Spacone, E., Filippou, F. C., & Taucer, F. F. (1996). Fibre beam–column model for non‐linear analysis of R/C frames: Part I. Formulation. Earthquake engineering & structural dynamics, 25(7), 711-725.
    176. Ibarra, L. F., Medina, R. A., & Krawinkler, H. (2005). Hysteretic models that incorporate strength and stiffness deterioration. Earthquake engineering & structural dynamics, 34(12), 1489-1511.
    177. Haselton CB, Liel AB, Taylor Lange S, Deierlein GG. Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings PEER Report, 2007/03. Berkeley: University of California; 2008.
    178. Seible, F., Priestley, M. N., Hegemier, G. A., & Innamorato, D. (1997). Seismic retrofit of RC columns with continuous carbon fiber jackets. Journal of Composites for Construction, 1(2), 52-62.
    179. Yaqub, M., Bailey, C., Nedwell, P., Khan, Q., & Javed, I. (2013). Strength and stiffness of post-heated columns repaired with ferrocement and fibre reinforced polymer jackets. Composites Part B: Engineering, 44(1), 200-211.
    180. Priestley, M. N., Seible, F., & Calvi, G. M. (1996). Seismic design and retrofit of bridges: John Wiley & Sons.
    181. Rodriguez, M., & Park, R. (1994). Seismic load tests on reinforced concrete columns strengthened by jacketing. Structural Journal, 91(2), 150-159.
    182. Priestley, M. N., Seible, F., Xiao, Y., & Verma, R. (1994). Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength-part 1: Theoretical considerations and test design. Structural Journal, 91(4), 394-405.
    183. Priestley, M. N., Verma, R., & Xiao, Y. (1994). Seismic shear strength of reinforced concrete columns. Journal of Structural Engineering, 120(8), 2310-2329.
    184. Itani, R. (2003). Effects of retrofitting applications on reinforced concrete bridges. Columns 2003.
    185. Foraboschi, P. (2015). Analytical model to predict the lifetime of concrete members externally reinforced with FRP. Theoretical and Applied Fracture Mechanics, 75, 137-145.
    186. Foraboschi, P. (2016). Effectiveness of novel methods to increase the FRP-masonry bond capacity. Composites Part B: Engineering, 107, 214-232.
    187. Kaish, A., Jamil, M., Raman, S., Zain, M., & Nahar, L. (2018). Ferrocement composites for strengthening of concrete columns: A review. Construction and Building Materials, 160, 326-340.
    188. Ilki, A., Demir, C., Bedirhanoglu, I., & Kumbasar, N. (2009). Seismic retrofit of brittle and low strength RC columns using fiber reinforced polymer and cementitious composites. Advances in Structural Engineering, 12(3), 325-347.
    189. Bedirhanoglu, I., Ilki, A., & Kumbasar, N. (2013). Precast fiber reinforced cementitious composites for seismic retrofit of deficient RC joints–a pilot study. Engineering Structures, 52, 192-206.
    190. Ates, A. O., Khoshkholghi, S., Tore, E., Marasli, M., & Ilki, A. (2019). Sprayed glass fiber–reinforced mortar with or without basalt textile reinforcement for jacketing of low-strength concrete prisms. Journal of Composites for Construction, 23(2), 04019003.
    191. Li, V. C., Horii, H., Kabele, P., Kanda, T., & Lim, Y. (2000). Repair and retrofit with engineered cementitious composites. Engineering Fracture Mechanics, 65(2-3), 317-334.
    192. AL-Gemeel, A. N., & Zhuge, Y. (2018). Experimental investigation of textile reinforced engineered cementitious composite (ECC) for square concrete column confinement. Construction and Building Materials, 174, 594-602.
    193. Cho, C.-G., Han, B.-C., Lim, S.-C., Morii, N., & Kim, J.-W. (2018). Strengthening of reinforced concrete columns by High-Performance Fiber-Reinforced Cementitious Composite (HPFRC) sprayed mortar with strengthening bars. Composite structures, 202, 1078-1086.
    194. ACI Committee 546. ACI 546R-14 Guide to Concrete Repair. American Concrete Institute, 2014. ISBN 9780870319334.
    195. Guan, D., Jiang, C., Guo, Z., & Ge, H. (2018). Development and seismic behavior of precast concrete beam-to-column connections. Journal of Earthquake Engineering, 22(2), 234-256.
    196. Xu, H., Yu, M., Xue, C., Xu, L., & Ye, J. (2020). Experimental study on fire resistance of precast concrete columns with efficient reinforcement. Engineering Structures, 204, 109947.
    197. Guan, D., Guo, Z., Jiang, C., Yang, S., & Yang, H. (2019). Experimental evaluation of precast concrete beam-column connections with high-strength steel rebars. KSCE Journal of Civil Engineering, 23(1), 238-250.
    198. Guan, D., Yang, H., Ju, D., Guo, Z., & Yang, S. (2019). Cyclic loading test on a locally post-tensioned precast concrete beam–column connection. Advances in Structural Engineering, 22(12), 2699-2711.
    199. Haber, Z. B., Mackie, K. R., & Al-Jelawy, H. M. (2017). Testing and analysis of precast columns with grouted sleeve connections and shifted plastic hinging. Journal of Bridge Engineering, 22(10), 04017078.
    200. Liu, Y.-L., Wang, Y.-S., Fang, G., Alrefaei, Y., Dong, B., & Xing, F. (2018). A preliminary study on capsule-based self-healing grouting materials for grouted splice sleeve connection. Construction and Building Materials, 170, 418-423.
    201. Lu, Z., Huang, J., Li, Y., Dai, S., Peng, Z., Liu, X., & Zhang, M. (2019). Mechanical behaviour of grouted sleeve splice under uniaxial tensile loading. Engineering Structures, 186, 421-435.
    202. Zhao, C., Zhang, Z., Wang, J., & Wang, B. (2019). Numerical and theoretical analysis on the mechanical properties of improved CP-GFRP splice sleeve. Thin-Walled Structures, 137, 487-501.
    203. Zheng, Y., Guo, Z., Guan, D., & Zhang, X. (2018). Parametric study on a novel grouted rolling pipe splice for precast concrete construction. Construction and Building Materials, 166, 452-463.
    204. De Larrard, F., & Sedran, T. (1994). Optimization of ultra-high-performance concrete by the use of a packing model. Cement and concrete research, 24(6), 997-1009.
    205. Habel, K., Denarié, E., & Brühwiler, E. (2007). Experimental investigation of composite ultra-high-performance fiber-reinforced concrete and conventional concrete members. ACI Structural Journal, 104(1), 93.
    206. Gorst, N., & Clark, L. (2003). Effects of thaumasite on bond strength of reinforcement in concrete. Cement and Concrete Composites, 25(8), 1089-1094.
    207. Aaleti, S., Sritharan, S., & Abu-Hawash, A. (2013). Innovative UHPC-normal concrete composite bridge deck. Paper presented at the Proceedings of the RILEM-fib-AFGC International Symposium on Ultra-High Performance Reinforced Concrete, Eds: F. Toutlemonde, J. Resplendino, Rilem Publications SARL, Bagneux, France.
    208. Dagenais, M.-A., Massicotte, B., & Boucher-Proulx, G. (2018). Seismic retrofitting of rectangular bridge piers with deficient lap splices using ultrahigh-performance fiber-reinforced concrete. Journal of Bridge Engineering, 23(2), 04017129.
    209. Saadatmanesh, H., Ehsani, M. R., & Jin, L. (1996). Seismic strengthening of circular bridge pier models with fiber composites. ACI Structural Journal, 93(6), 639-738.
    210. Yuan, J., & Graybeal, B. A. (2014). Bond behavior of reinforcing steel in ultra-high performance concrete. United States. Federal Highway Administration, Office of Infrastructure.
    211. Farzad, M., Shafieifar, M., & Azizinamini, A. (2019). Retrofitting of bridge columns using UHPC. Journal of Bridge Engineering, 24(12), 04019121.
    212. Hong, S.-G., Lee, J.-H., Choi, Y., & Gu, I.-Y. (2021). Seismic Strengthening of Concrete Columns by Ultrahigh-Performance Fiber-Reinforced Concrete Jacketing. Journal of Structural Engineering, 147(10), 04021157.
    213. Guan, D., Chen, Z., Liu, J., Lin, Z., & Guo, Z. (2021). Seismic performance of precast concrete columns with prefabricated UHPC jackets in plastic hinge zone. Engineering Structures, 245, 112776.
    214. Tong, T., Lei, H., Yuan, S., & Liu, Z. (2020). Experimental investigation and seismic vulnerability assessment of low flexural strength rectangular bridge piers retrofitted with ultrahigh-performance concrete jackets. Engineering Structures, 206, 110132.
    215. Shao, Y., Kuo, C.-W., & Hung, C.-C. (2021). Seismic performance of full-scale UHPC-jacket-strengthened RC columns under high axial loads. Engineering Structures, 243, 112657.
    216. Hung, C.-C., Kuo, C.-W., & Shao, Y. (2021). Cast-in-place and prefabricated UHPC jackets for retrofitting shear-deficient RC columns with different axial load levels. Journal of Building Engineering, 44, 103305.
    217. Massicotte, B., Dagenais, M., & Garneau, J. (2014). Bridge pier seismic strengthening using UHPFRC cover. Paper presented at the 9th International Conference on Short and Medium Span Bridges, Santiago Chile, January.
    218. Kennedy, D., Habel, K., & Fraser, G. (2015). Ultra High-Performance Concrete Column Jacket Retrofit for the Mission Bridge. Paper presented at the 11th Canadian Conference on Earthquake Engineering.
    219. Einea, A., Yamane, T., & Tadros, M. K. (1995). Grout-filled pipe splices for precast concrete construction. PCI journal, 40(1), 82-93.
    220. Ling, J. H., Rahman, A. B. A., Ibrahim, I. S., & Hamid, Z. A. (2012). Behaviour of grouted pipe splice under incremental tensile load. Construction and Building Materials, 33, 90-98.
    221. Haber, Z. B., Saiidi, M. S., & Sanders, D. H. (2015). Behavior and simplified modeling of mechanical reinforcing bar splices. ACI Structural Journal, 112(2), 179.
    222. Paulson, C., & Hanson, J. (1991). Fatigue behavior of welded and mechanical splices in reinforcing steel: Wiss, Janney, Elstner Associates.
    223. Rowell, S. P., Grey, C. E., Woodson, S. C., & Hager, K. P. (2009). High strain-rate testing of mechanical couplers. Rep. ERDC TR-09- 8, U.S. Army Engineer Research and Development Center, Port Hueneme, CA.
    224. Abdel-Fattah, B., & Wight, J. K. (1987). Study of moving beam plastic hinging zones for earthquake-resistant design of reinforced concrete buildings. Structural Journal, 84(1), 31-39.
    225. Eom, T.-S., Park, H.-G., Hwang, H.-J., & Kang, S.-M. (2016). Plastic hinge relocation methods for emulative PC beam–column connections. Journal of Structural Engineering, 142(2), 04015111.
    226. Lehman, D. E., Gookin, S. E., Nacamuli, A. M., & Moehle, J. P. (2001). Repair of earthquake-damaged bridge columns. Structural Journal, 98(2), 233-242.
    227. Rutledge, S. T., Kowalsky, M. J., Seracino, R., & Nau, J. M. (2014). Repair of reinforced concrete bridge columns containing buckled and fractured reinforcement by plastic hinge relocation. Journal of Bridge Engineering, 19(8), A4013001.
    228. Parks, J. E., Brown, D. N., Ameli, M., & Pantelides, C. P. (2016). Seismic Repair of Severely Damaged Precast Reinforced Concrete Bridge Columns Connected with Grouted Splice Sleeves. ACI Structural Journal, 113(3).
    229. SDC (The Seismic Design Criteria). Caltrans seismic design criteria version 1.7. Sacramento (CA, USA): California Department of Transportation; 2013.
    230. Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of solids and structures, 25(3), 299-326.
    231. Lee, J., & Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of engineering mechanics, 124(8), 892-900.
    232. E.C. Bentz, Sectional Analysis of Reinforced Concrete Members, University of Toronto, Toronto, 2000.
    233. Popovics, S. (1973). A numerical approach to the complete stress-strain curve of concrete. Cement and concrete research, 3(5), 583-599.
    234. Porasz, A. (1989). An investigation of the stress-strain characteristics of high strength concrete in shear. MASc thesis, Department of Civil Engineering, University of Toronto, Toronto, Ontario, Canada.
    235. A.C. Institute, ACI 318M-14 Building Code Requirements for Structural Concrete, 2014.
    236. C.C. Hung, K.-W. Wen, Investigation of shear strength of ultra-high performance concrete beams without stirrup, in: 17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan, 2020.
    237. Habib, A., Yildirim, U., & Eren, O. (2020). Column repair and strengthening using RC jacketing: a brief state-of-the-art review. Innovative Infrastructure Solutions, 5(3), 75.
    238. Liu, J., & Sheikh, S. A. (2013). Fiber-Reinforced Polymer-Confined Circular Columns under Simulated Seismic Loads. ACI Structural Journal, 110(6).
    239. Ma, G., & Li, H. (2015). Experimental study of the seismic behavior of predamaged reinforced-concrete columns retrofitted with basalt fiber–reinforced polymer. Journal of Composites for Construction, 19(6), 04015016.
    240. Del Rey Castillo, E., Griffith, M., & Ingham, J. (2018). Seismic behavior of RC columns flexurally strengthened with FRP sheets and FRP anchors. Composite structures, 203, 382-395.
    241. Shin, J., & Park, S. (2022). Optimum retrofit strategy of FRP column jacketing system for non-ductile RC building frames using artificial neural network and genetic algorithm hybrid approach. Journal of Building Engineering, 57, 104919.
    242. Belal, M. F., Mohamed, H. M., & Morad, S. A. (2015). Behavior of reinforced concrete columns strengthened by steel jacket. HBRC Journal, 11(2), 201-212.
    243. Wang, L., Su, R., Cheng, B., Li, L., Wan, L., & Shan, Z. (2017). Seismic behavior of preloaded rectangular RC columns strengthened with precambered steel plates under high axial load ratios. Engineering Structures, 152, 683-697.
    244. Villar-Salinas, S., Guzmán, A., & Carrillo, J. (2021). Performance evaluation of structures with reinforced concrete columns retrofitted with steel jacketing. Journal of Building Engineering, 33, 101510.
    245. Bousias, S. N., Biskinis, D., Fardis, M. N., & Spathis, A.-L. (2007). Strength, stiffness, and cyclic deformation capacity of concrete jacketed members. ACI Structural Journal, 104(5), 521.
    246. Hung, C.-C., & Chen, Y.-S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and Building Materials, 111, 408-418.
    247. Graybeal, B. A., and J. Yuan. 2014. Bond behavior of reinforcing steel in ultra-high performance concrete. Rep. No. FHWA-HRT-14-089; HRDI-40/11-14 (300) E. Washington, DC: Federal Highway Administration.
    248. De la Varga, I., Haber, Z., & Graybeal, B. (2018). Enhancing shrinkage properties and bond performance of prefabricated bridge deck connection grouts: material and component testing. Journal of materials in civil engineering, 30(4), 04018053.
    249. Zhang, Y., Lei, H., Dong, Z., Li, T., Ma, F., Liu, H., & Deng, M. (2023). Cyclic response of precast concrete columns connected with cast-in-place UHPC in plastic hinge region. Journal of Building Engineering, 65, 105793.
    250. Yuan, W., Wang, X., Guo, A., Li, C., Dong, Z., & Wu, X. (2022). Cyclic performance of RC bridge piers retrofitted with UHPC jackets: Experimental investigation. Engineering Structures, 259, 114139.
    251. Tong, T., Lei, H., Yuan, S., & Liu, Z. (2020). Experimental investigation and seismic vulnerability assessment of low flexural strength rectangular bridge piers retrofitted with ultrahigh-performance concrete jackets. Engineering Structures, 206, 110132.
    252. Ma, G., Wu, C., & Liu, K. (2023). Seismic performance of lap-spliced pre-damaged and intact concrete columns strengthened or retrofitted with UHPC and NSM. Engineering Structures, 277, 115431.
    253. Sakr, M. A., El Korany, T. M., & Osama, B. (2020). Analysis of RC columns strengthened with ultra-high performance fiber reinforced concrete jackets under eccentric loading. Engineering Structures, 220, 111016.
    254. Dadvar, S. A., Mostofinejad, D., & Bahmani, H. (2020). Strengthening of RC columns by ultra-high performance fiber reinforced concrete (UHPFRC) jacketing. Construction and Building Materials, 235, 117485.
    255. Xie, J., Fu, Q., & Yan, J.-B. (2019). Compressive behaviour of stub concrete column strengthened with ultra-high performance concrete jacket. Construction and Building Materials, 204, 643-658.
    256. Tong, T., Yuan, S., Zhuo, W., He, Z., & Liu, Z. (2019). Seismic retrofitting of rectangular bridge piers using ultra-high performance fiber reinforced concrete jackets. Composite structures, 228, 111367.
    257. Fu, T., Wang, K., Zhu, Z., Ren, X., Li, Y., Xu, L., . . . Sun, Z. (2023). Seismic performance of prefabricated square hollow section piers strengthened by jacketing using UHPC and high-strength steel. Paper presented at the Structures.
    258. Zhang, X., Wu, X., Zhang, D., Huang, Q., & Chen, B. (2022). Axial compressive behaviors of reinforced concrete composite column with precast ultra-high performance concrete (UHPC) jacket. Journal of Building Engineering, 48, 103956.
    259. Ronanki, V. S., & Aaleti, S. (2022). Experimental and analytical investigation of UHPC confined concrete behavior. Construction and Building Materials, 325, 126710.
    260. Gholampour, A., Hassanli, R., Mills, J. E., Vincent, T., & Kunieda, M. (2019). Experimental investigation of the performance of concrete columns strengthened with fiber reinforced concrete jacket. Construction and Building Materials, 194, 51-61.
    261. Al-Osta, M. A., Sharif, A. M., Suhoothi, A. M., & Najamuddin, S. K. (2021). Strengthening of axially and eccentrically compression loaded RC columns with UHPC jacketing system: Experimental investigation and finite element modeling. Engineering Structures, 245, 112850.
    262. Chan, T., Mackie, K. R., & Haber, Z. B. (2020). Precast Seismic Bridge Column Connection Using Ultra-High-Performance Concrete Lap Splice. ACI Structural Journal, 117(1).
    263. Hsiao, P. C., Chou, S. C., & Hung, C. C. (2023). A novel seismic strengthening method for RC frames: Precast ultra-high performance concrete braces. Journal of Building Engineering, 71, 106592.
    264. ASTM C39/C39M-14 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, Pa., 2014.
    265. ASTM C 1856/1856M-17, Fabricating and testing specimens of ultra-high performance concrete, Am. Soc. Test. Mater. (2017) 1–4.
    266. ASTM A1035/A1035M-16 American Society for Testing and Materials (ASTM), Standard Specification for Deformed and Plain, Low-Carbon, Chromium, Steel Bars for Concrete Reinforcement, ASTM International, West Conshohocken, 2016.
    267. Hung, C.-C., Lee, H.-S., & Chan, S. N. (2019). Tension-stiffening effect in steel-reinforced UHPC composites: Constitutive model and effects of steel fibers, loading patterns, and rebar sizes. Composites Part B: Engineering, 158, 269-278.
    268. Kang, S.-T., Choi, J.-I., Koh, K.-T., Lee, K. S., & Lee, B. Y. (2016). Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete. Composite structures, 145, 37-42.
    269. FEMA. 2007.Interim testing protocols for determining the seismic perfor-mance characteristics of structural and nonstructural components. FEMA 461. Washington, DC: FEMA.
    270. Park, R. (1989). Evaluation of ductility of structures and structural assemblages from laboratory testing. Bulletin of the New Zealand society for earthquake engineering, 22(3), 155-166.
    271. Chou, S.-C. 2021. “Novel UHPC braces for seismic retrofitting of RC frames.” Masters thesis, National Cheng Kung Univ., Dept. of Civil Engineering.
    272. Elwood, K. J., & Eberhard, M. O. (2009). Effective Stiffness of Reinforced Concrete Columns. ACI Structural Journal, 106(4).
    273. Moehle, J. (2015). Seismic design of reinforced concrete buildings: McGraw-Hill Education.
    274. Sezen, H., & Moehle, J. P. (2006). Seismic tests of concrete columns with light transverse reinforcement. ACI Structural Journal, 103(6), 842.
    275. Chao, S., Shamshiri, M., Liu, X., Palacios, G., Schultz, A., & Nojavan, A. (2021). Seismically Robust Ultra-High-Performance Fiber-Reinforced Concrete Columns. ACI Structural Journal, 118(2), 17-32.
    276. Lampropoulos A, Tsioulou O, Dritsos S (2013) Restrained concrete shrinkage in case of strengthened bridge piers by concrete jacketing. In: 4 th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering, pp 967–977. Kos Island, Greece: ECCOMAS.
    277. Taucer, F., Spacone, E., & Filippou, F. C. (1991). A fiber beam-column element for seismic response analysis of reinforced concrete structures (Vol. 91): Earthquake Engineering Research Center, College of Engineering, EERC College of Engineering. University of California; 1991; 91(17).
    278. Spacone, E., Filippou, F. C., & Taucer, F. F. (1996b). Fibre beam–column model for non‐linear analysis of R/C frames: part II. Applications. Earthquake engineering & structural dynamics, 25(7), 727-742.
    279. Berry, M. P., & Eberhard, M. O. (2005). Practical performance model for bar buckling. Journal of Structural Engineering, 131(7), 1060-1070.
    280. Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804-1826.
    281. Setzler, E. J., & Sezen, H. (2008). Model for the lateral behavior of reinforced concrete columns including shear deformations. Earthquake spectra, 24(2), 493-511.
    282. Elwood, K. J. (2002). Shake table tests and analytical studies on the gravity load collapse of reinforced concrete frames: University of California, Berkeley.
    283. Elwood, K. J. (2004). "Modelling failures in existing reinforced concrete columns." Canadian Journal of Civil Engineering 31(5): 846-859.
    284. Sezen, H., & Moehle, J. P. (2004). Shear strength model for lightly reinforced concrete columns. Journal of Structural Engineering, 130(11), 1692-1703.
    285. Elwood, K. J., & Moehle, J. P. (2005). Drift capacity of reinforced concrete columns with light transverse reinforcement. Earthquake spectra, 21(1), 71-89.
    286. Oh, T., Kim, M.-J., Banthia, N., & Yoo, D.-Y. (2023). Influence of curing conditions on mechanical and microstructural properties of ultra-high-performance strain-hardening cementitious composites with strain capacity up to 17.3%. Developments in the Built Environment, 14, 100150.
    287. Yoo, D.-Y., Oh, T., & Banthia, N. (2022). Nanomaterials in ultra-high-performance concrete (UHPC)–A review. Cement and Concrete Composites, 104730.
    288. Yoo, D.-Y., & Banthia, N. (2017). Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Construction and Building Materials, 149, 416-431.
    289. Hung, C.-C., Chen, Y.-T., & Yen, C.-H. (2020). Workability, fiber distribution, and mechanical properties of UHPC with hooked end steel macro-fibers. Construction and Building Materials, 260, 119944.
    290. Li, J., Wu, Z., Shi, C., Yuan, Q., & Zhang, Z. (2020). Durability of ultra-high performance concrete–A review. Construction and Building Materials, 255, 119296.
    291. Yoo, D.-Y., Jang, Y. S., Oh, T., & Banthia, N. (2022). Use of engineered steel fibers as reinforcements in ultra-high-performance concrete considering corrosion effect. Cement and Concrete Composites, 133, 104692.
    292. Oh, T., Chun, B., Jang, Y. S., Yeon, J. H., Banthia, N., & Yoo, D.-Y. (2023). Effect of nano-SiO2 on fiber–matrix bond in ultra-high-performance concrete as partial substitution of silica flour. Cement and Concrete Composites, 138, 104957.
    293. Kim, M.-J., Yoo, D.-Y., Kim, S., Shin, M., & Banthia, N. (2018). Effects of fiber geometry and cryogenic condition on mechanical properties of ultra-high-performance fiber-reinforced concrete. Cement and concrete research, 107, 30-40.
    294. Shao, Y., Hung, C.-C., & Billington, S. L. (2021). Gradual crushing of steel reinforced HPFRCC beams: Experiments and simulations. Journal of Structural Engineering, 147(8), 04021114.
    295. Ye, M., Li, L., Yoo, D.-Y., Li, H., Shao, X., & Zhou, C. (2023). Mechanistic understanding of precast UHPC segmental beams with external tendons and epoxy joints subject to combined bending and shear. Engineering Structures, 280, 115698.
    296. Feng, Z., Li, C., Ke, L., & Yoo, D.-Y. (2022). Tensile behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) structure with cold joints. Engineering Structures, 273, 115084.
    297. Hung, C.-C., Yuen, T. Y., Huang, C.-W., & Yen, C.-H. (2022). Tension lap splices in UHPC beams: Influence of rebar size, steel fibers, splice length, and coarse aggregate. Journal of Building Engineering, 55, 104716.
    298. Zhou, J., Li, C., Yoo, D.-Y., He, J., & Feng, Z. (2022). Modified softened membrane model for ultra-high-performance fiber-reinforced concrete solid and hollow beams under pure torsion. Engineering Structures, 270, 114865.
    299. Feng, Z., Li, C., Pan, R., Yoo, D.-Y., He, J., & Ke, L. (2022). Shear Capacity of Ultrahigh-Performance Concrete with Monolithic Interface and Wet-Joint Interface. Journal of materials in civil engineering, 34(7), 04022153.
    300. Hung, C.-C., Hu, F.-Y., & Yen, C.-H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
    301. Zhou, J., Li, C., Feng, Z., & Yoo, D.-Y. (2022). Experimental investigation on torsional behaviors of ultra-high-performance fiber-reinforced concrete hollow beams. Cement and Concrete Composites, 129, 104504.
    302. Hung, C.-C., Li, H., & Chen, H.-C. (2017). High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications. Engineering Structures, 141, 59-74.
    303. Feng, Z., Li, C., Yoo, D.-Y., Pan, R., He, J., & Ke, L. (2021). Flexural and cracking behaviors of reinforced UHPC beams with various reinforcement ratios and fiber contents. Engineering Structures, 248, 113266.
    304. Hung, C.-C., & Yen, C.-H. (2021). Compressive behavior and strength model of reinforced UHPC short columns. Journal of Building Engineering, 35, 102103.
    305. Graybeal, B., Brühwiler, E., Kim, B.-S., Toutlemonde, F., Voo, Y. L., & Zaghi, A. (2020). International perspective on UHPC in bridge engineering. Journal of Bridge Engineering, 25(11), 04020094.
    306. Hung, C.-C., & Hsieh, P.-L. (2020). Comparative study on shear failure behavior of squat high-strength steel reinforced concrete shear walls with various high-strength concrete materials. Structures, 23, 56-68.
    307. Aboukifa, M., & Moustafa, M. A. (2021). Experimental seismic behavior of ultra-high performance concrete columns with high strength steel reinforcement. Engineering Structures, 232, 111885.
    308. Alkaysi, M., El-Tawil, S., Liu, Z., & Hansen, W. (2016). Effects of silica powder and cement type on durability of ultra high performance concrete (UHPC). Cement and Concrete Composites, 66, 47-56.
    309. Ghafari, E., Arezoumandi, M., Costa, H., & Júlio, E. (2015). Influence of nano-silica addition on durability of UHPC. Construction and Building Materials, 94, 181-188.
    310. Tai, Y.-S., El-Tawil, S., Meng, B., & Hansen, W. (2020). Parameters influencing fluidity of UHPC and their effect on mechanical and durability properties. Journal of materials in civil engineering, 32(10), 04020298.
    311. Kim, Y. Y., Fischer, G., Lim, Y. M., & Li, V. C. (2004). Mechanical performance of sprayed engineered cementitious composite using wet-mix shotcreting process for repair applications. Materials Journal, 101(1), 42-49.
    312. Lin, Y.-W., Wotherspoon, L., Scott, A., & Ingham, J. M. (2014). In-plane strengthening of clay brick unreinforced masonry wallettes using ECC shotcrete. Engineering Structures, 66, 57-65.
    313. Khooshechin, M., & Tanzadeh, J. (2018). Experimental and mechanical performance of shotcrete made with nanomaterials and fiber reinforcement. Construction and Building Materials, 165, 199-205.
    314. Banthia, N., Trottier, J.-F., & Beaupré, D. (1994). Steel-fiber-reinforced wet-mix shotcrete: comparisons with cast concrete. Journal of Materials in Civil Engineering, 6(3), 430-437.
    315. Castillo, L. S., & de Cea, A. A. (2012). Bi-layer diaphragm walls: Evolution of concrete-to-concrete bond strength at early ages. Construction and Building Materials, 31, 29-37.
    316. Kaufmann, J., Frech, K., Schuetz, P., & Münch, B. (2013). Rebound and orientation of fibers in wet sprayed concrete applications. Construction and Building Materials, 49, 15-22.
    317. ASTM International. ASTM C403/C403M-08: Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance, ASTM International: West Conshohocken, PA, USA, 2008.
    318. ASTM, C. 230/C 230M–03 (2003) Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. In: December.
    319. ASTM (American Society for Testing and Materials)., 2015. Standard Test Method for Field Vane 524 Shear Test in Saturated Fine-Grained Soils. ASTM D2573-15, West Conshohocken, PA.
    320. ASTM C1140/C1140M-19. Standard practice for preparing and testing specimens from shotcrete test panels. West Conshohocken, PA: ASTM International; 2019.
    321. C109/C109M-16a, A. (2016). Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] cube specimens). West Conshohocken: ASTM International.
    322. Lee, B. Y., Kim, J.-K., Kim, J.-S., & Kim, Y. Y. (2009). Quantitative evaluation technique of Polyvinyl Alcohol (PVA) fiber dispersion in engineered cementitious composites. Cement and Concrete Composites, 31(6), 408-417.
    323. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.
    324. MathWorks. 2020b. Image Processing Toolbox.
    325. Grünewald (2004) Performance-based design of selfcompacting fibre reinforced concrete. Delft University of Technology, Delft.
    326. Xia, M., Hamada, H., & Maekawa, Z. (1995). Flexural stiffness of injection molded glass fiber reinforced thermoplastics. International polymer processing, 10(1), 74-81.
    327. Liberatore, L., Noto, F., Mollaioli, F., & Franchin, P. (2018). In-plane response of masonry infill walls: Comprehensive experimentally-based equivalent strut model for deterministic and probabilistic analysis. Engineering Structures, 167, 533-548.
    328. Shing, P. B.; Mehrabi, A. B. (2002), “Behaviour and analysis of masonry‐infilled frames,” Progress in Structural Engineering and Materials, Vol. 4, No.3, 320-331.
    329. Stafford Smith, B., & Carter, C. (1969). A method of analysis for infilled frames. proceedings of the Institution of civil Engineers, 44(1), 31-48.
    330. Mainstone, R. J., and G. A. Weeks. 1974. “The influence of a bounding frame on the racking stiffness and strengths of brick walls.” In Proc., 2nd Int. Brick Masonry Conf. Stoke-on-Trent, UK: British Ceramic Research Association.
    331. Saneinejad, A., & Hobbs, B. (1995). Inelastic design of infilled frames. Journal of Structural Engineering, 121(4).
    332. FEMA. 2000. Evaluation of earthquake damaged concrete and masonry wall buildings: Basic procedures manual. FEMA 306. Washington, DC: FEMA.
    333. Stavridis, A., J. Martin, and S. Bose. 2017. “Updating the ASCE 41 provisions for infilled RC frames.” In Proc., 2017 Structural Engineers Association of California (SEAOC) Convention. Sacramento, CA: Structural Engineers Association of California.
    334. Chrysostomou, C., Gergely, P., & Abel, J. (2002). A six-strut model for nonlinear dynamic analysis of steel infilled frames. International Journal of Structural Stability and Dynamics, 2(03), 335-353.
    335. Liberatore, L., Noto, F., Mollaioli, F., & Franchin, P. (2017). Comparative assessment of strut models for the modelling of in-plane seismic response of infill walls. Paper presented at the Proc., 6th ECCOMAS Thematic Conf. on Computational Methods in Structural Dynamics and Earthquake Engineering.
    336. De Risi, M. T., Del Gaudio, C., Ricci, P., & Verderame, G. M. (2018). In-plane behaviour and damage assessment of masonry infills with hollow clay bricks in RC frames. Engineering Structures, 168, 257-275.
    337. Huang, H., Burton, H. V., & Sattar, S. (2020). Development and utilization of a database of infilled frame experiments for numerical modeling. Journal of Structural engineering, 146(6), 04020079.
    338. Billington, S. L., Kyriakides, M. A., Blackard, B., Willam, K., Stavridis, A., & Shing, P. B. (2009). Evaluation of a sprayable, ductile cement-based composite for the seismic retrofit of unreinforced masonry infills. Paper presented at the Proceedings of the ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures, San Francisco, CA, USA.
    339. Lignos, D. G., & Krawinkler, H. (2011). Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading. Journal of Structural Engineering-Reston, 137(11), 1291.
    340. Wang, Y.-Q. 2021. “UHPC Shotcrete for Seismic Retrofitting of Masonry infilled RC Frames.” Masters thesis, National Cheng Kung Univ., Dept. of Civil Engineering.
    341. CNS 382 (2007), "Ordinary Brick" National Standard of the Republic of China. (in Chinese).
    342. ASTM C1314-16, Standard Test Method for Compressive Strength of Masonry Prisms, ASTM International, West Conshohocken, PA, 2016.
    343. Haselton, C. B., Liel, A. B., Taylor-Lange, S. C., & Deierlein, G. G. (2016). Calibration of model to simulate response of reinforced concrete beam-columns to collapse. ACI Structural Journal, 113(6).
    344. Ibarra, L. F., & Krawinkler, H. (2005). Global collapse of frame structures under seismic excitations, John A. Blume Earthquake Engineering Center.
    345. Panagiotakos, T. B., & Fardis, M. N. (2001). Deformations of reinforced concrete members at yielding and ultimate. Structural Journal, 98(2), 135-148.
    346. PEER/ATC-72-1 (2010), “Modeling and Acceptance Criteria for Seismic Design and Analysis of Tall Buildings,” Applied Technology Council, Redwood City, CA.
    347. Bose, S., Martin, J., & Stavridis, A. (2018). Framework for the nonlinear dynamic simulation of the seismic response of infilled RC frames. Paper presented at the Proceedings of the 11th National Conference on Earthquake Engineering, Los Angeles, CA.
    348. ASCE (2017) Seismic Evaluation and Retrofit of Existing Buildings. ASCE/SEI 41-17. (American Society of Civil Engineers, Reston, VA).
    349. Hsiao, F.P., Chung, L.L., Yeh, Y.K., Chien, W.Y., Shen, W.C., Chiou, T.C., Chow, T.K., Chao, Y.F., Weng, P.W., Yang, Y.S., Tu, Y.S., Chai, J.F. & Hwang, S.J. 2013. Technology handbook for seismic evaluation and retrofit of school buildings (Third edition), National Center for Research on Earthquake Engineering (NCREE) report, NCREE-13-023, Taipei, Taiwan. (in Chinese).
    350. Liberatore, L., & Decanini, L. (2011). Effect of infills on the seismic response of high-rise RC buildings designed as bare according to Eurocode 8. Ingegneria sismica, 3, 7-23.
    351. Fukuyama, H., & Suwada, H. (2003). Basic test on compressive properties of high performance fiber reinforced cementitious composites (Part 2 Biaxial Loading Test). Paper presented at the Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan.
    352. Hung, C.-C., & El-Tawil, S. (2010). Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI materials journal, 107(6).

    QR CODE