| 研究生: |
洪薇清 Hung, Wei-Ching |
|---|---|
| 論文名稱: |
踝足裝具之生物力學效應 Biomechanical Effect of Ankle-Foot Orthoese |
| 指導教授: |
張志涵
Chang, Chih-Han |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 勁度 、裁線 、界面應力 、有限元素法 、踝足裝具 |
| 外文關鍵詞: | ankle-foot orthoses, stiffness, trimline, interface stress, finite element method |
| 相關次數: | 點閱:166 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
後穿式踝足裝具(Posterior Ankle Foot Orthoses posterior AFO)常用來矯正異常步態及在行走時維持足踝部於正常姿勢。研究指出不同疾病的病人應給予其個別的踝足裝具,因為不適當的踝足裝具將影響病人的步態流暢性或增加足底面的壓力而導致足部壓瘡。現今踝足裝具的製造,仍然是靠義肢裝具師的經驗及其主觀判斷,然後在經由不斷地修改,才能得到較佳的結果。以往學者僅針對踝足裝具本身作力學分析或是以感測器量測足底界面之壓力分佈,因此對整個足部與踝足裝具的界面力學瞭解很有限,所以本研究期望藉由實驗量測與有限元素模型分析探討踝足裝具本身以及患者在穿戴踝足裝具時界面力學行為。本研究根據電腦斷層掃瞄影像建構出接近真實幾何外型的足部與踝足裝具三維有限元素模型,並以此模型探討踝足裝具本身的力學行為,及足部穿戴踝足裝具後之界面力學表現。在實驗的部分以EMED-PEDAR量測足部與踝足裝具間的足底壓力,用實驗量測來驗證有限元素模擬的結果。其結果顯示站立時在前足區為界面應力發生之最大值,與實驗相符。而在模擬heel strike及toe off時,界面最大剪應力分別增加1.6及5.9倍,此結果指出行走時不僅造成踝足裝具與足部間界面壓力的增加,界面剪應力的增加也是必須觀察的一個重點。在踝足裝具本身的力學表現上,踝足裝具的厚度與其裁線大小會對裝具的勁度造成影響。其中裁線越小則勁度越大,厚度越厚勁度也越大,且做蹠曲所需的力矩比做背曲來得大,其結果數據可提供臨床人員設計踝足裝具之參考。
Abstract
Posterior AFO are often used to correct abnormal gait and maintain ankle and foot in neutral position during ambulation. Unsuitable prescription will cause the increasing of plantar pressure and even ulceration. Currently, a suitable the correct prescription still relies on the orthotist’s experience and subjective judgments. This often induced a costly “trail and error” approach to obtain an acceptable AFO. In this study, 3-D finite element models of AFO and foot, based the CT images, were established to investigate the interface stress between the AFO and foot as well as the stiffness of AFO for different trimline and thickness designs. Experimental measurements of the contact pressure between the foot and AFO were also carried to valid the finite element simulation. The simulated result showed that the peak contact pressure was founded in the forefoot during foot flat. This outcome was consistent with the experimental result. The peak shear stress increased by 1.6 and 5.9 times during the heel strike and toe off respectively compared with the foot flat stage. This indicated that not only the contact pressure but also the shear stress should be considered during the evaluation of the AFO. As for the mechanical behavior of the AFO, the increasing of the radius of the trimline could decrease the stiffness of AFO while the increasing of AFO thickness would increase the stiffness. The thickness effect was large than the trimline effect.
參考文獻
[1] Bower P, Bader D, Condie D, Pratt D, Wallace WA, “Introduction and anatomical terminology”, Biomechanical Basis of Orthotic Management, Butterworth – Heinemann, pp. 1-4 1993
[2] Redford JB, “Basic principle of orthotics and rehabilitation technology”, Orthotics – Clinical Practice and Rehabilitation Technology, Churchill Livingstone InC. pp. 1-12 1995
[3] Condie D, Meadows CB, “Ankle-foot orthoses” Biomechanical Basis of Orthotic Management, Butterworth – Heinemann, pp124-145 1993
[4] Condie D, Meadows CB, “Some biomechanical consider in the design of ankle–foot orthoses”, Orthotics and Prosthetics, Vol.31, No.3, pp. 45-52, September 1977
[5] Golay W, Lunsford T, Lunsford BR, Greenfield J, “The effect of malleolar prominence on polypropylene AFO rigidity and buckling” Journal of Prothotics and Orthotics, Vol. 1, No.4, pp.231-241, 1989
[6] Clark DR, Lunsford TR, “Reinforced lower-limb orthosis-design principles” , Orthotics and Prosthetics, Vol.32 , No.2, pp. 1052-1062, June 1987
[7] Yamamoto S, Ebina M, Iwasaki M, Kubo S, Kawai H, Hayashi T, “Comparative study of mechanical characteristics of plastic AFOs”, Journal of Prothotics and Orthotics, Vol. 5, No. 2, pp. 47-52, April 1993
[8] Buckon CE, Thomas SS, Huston SJ, Moor M, Sussman M, Aiona M, “Comparison of three ankle-foot orthosis configurations for children with spastic hemiplegia”, Developmental Medicine & Child Neurology, Vol.43, pp. 317-378, 2001
[9] Miyazaki S, Yamamoto S, Ebina M, Iwasaki M, “A system for the continuous measurement of ankle joint moment in hemiplegic patients wearing ankle-foot orthoses”, Front. Med. Biol. Eng., No.5 pp. 215-232, 1993
[10] Yamamoto S, Miyazaki S, Kubota T, “ Quantification of the effect of the mechanical property of ankle-foot orthoses on hemiplegic gait”, Gait and Posture Vol. 1, No. 1, pp. 27-34, 1993
[11] Miyazaki S, Yamamoto S, Kubota T, “Effect of ankle-foot orthosis on active ankle moment in patients with hemiparesis”, Medical & Biological Engineering & Computing, pp.381-385, July 1997
[12] Crenshaw S, Herzog R, Castagno P, Richards J, Miller F, Michaloski G, Moran E, “The efficacy of tone-reducing features in orthotics on the gait of children with spastic diplegic cerebral palsy” Journal Pediatric Orthopaedics, Vol. 20, pp. 210-216, 2000
[13] McHUGH B, “Analysis of body-device interface forces in the sagittal plane for patients wearing ankle-foot orthoses,” Prosthetics and Orthotics International, Vol. 23, pp. 75-81, 1999
[14] Sumiya T, Suzuki Y, Kasahara T, “Stiffness control in posterior-type plastic ankle-foot orthoses: effect of ankle trimline Part1: a device for measurement ankle moment”, Prosthetics and Orthotics International, Vol. 20, pp. 129-131, 1996
[15] Sumiya T, Suzuki Y, Kasahara T, “Stiffness control in posterior-type plastic ankle-foot orthoses: effect of ankle trimline Part2: orthosis characteristics and orthosis/patient matching”, Prosthetics and Orthotics International, Vol. 20, pp. 132-137, 1996
[16] Nagaya M, “Shoehorn-type Ankle-foot orthoses: prediction of flexibility ”, Arch phys Med Rehabili Vol. 78 pp.82-84, January 1997
[17] Klasson B, Convery P, Paschke S, “Test apparatus for the measurement of the flexibility of ankle-foot orthoses in planes other than the loaded plane” Prosthetics and Orthotics International, Vol. 22, pp. 45-53, 1998
[18] Chu TM, Reddy NP, Padovan J, “Three-dimensional finite element stress analysis of the polypropylene, ankle-foot orthosis: static analysis”, Med. Eng. Phys., Vol. 17, No. 5, pp. 372-379, 1995
[19] Syngellakis S, Arnold, Rassoulian H, “Assessment of the non-linear behaviour of plastic ankle foot orthoses by the finite element method” Proc Instn Mech Engrs, Vol. 214, Part H, pp. 527-539, 2000
[20] Randolph AL, Nelson M, Maria P, Roberto P, “Use of computerized insole sensor system to evaluation the efficacy of a modified ankle-foot orthosis for redistributing heel pressure”, Arch phys Med Rehabili Vol. 80, pp. 801-804, July 1999
[21] Nowak MD, Khamis S, Abu-Hasaballah, Cooper PS, “Design enhancement of a solid ankle-foot orthosis: real-time contact pressure evaluation”, Journal of Rehabilitation Research and development, Vol. 37, No. 3, May/June pp.273-281, 2000
[22] 詹益坤,李淑貞, 楊世偉,趙令怡, 林佳貞, 張惠芳, “正常青年之足底壓力分析, 中華物療雜誌 第22卷 第二期 pp.81-89 1997
[23] 陳獻堂, 楊世偉, 許盛發, “足矯具(支架)的電腦輔助設計與製造”, 中華醫學工程學刊 第十五卷 第三期 中華民國八十四年九月 pp.245-257
[24] 許盛發, 楊世偉, “鞋墊店對足底壓力之生物力學效應”, 中華醫學工程學刊 第十六卷 第四期 中華民國八十五年十二月 pp.367-380
[25] 陳文斌, 謝月雲, 鄧復旦, “糖尿病病人的足部與輔具之三維有限元素接觸應力分析” 中華醫學工程學刊 第十八卷 第六期 中華民國八十七年六月 pp.367-380
[26] Chen WP, Tang FK, Ju CW, “Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis”, Clinical Biomechanics No. 16 pp.614-620, 2001
[27] Hayes WC, Keer LM, Herrmann G, Mockros LF, “ A mathematical analysis for indentation test of articular cartilage”, Journal Biomechanics, Vol. 5, pp. 541-551. 1972
[28] Zhang M, Zheng YP, Mak FT, “Estimating the effective Young’s modulus of soft tissues from indentation test-nonlinear finite element analysis of effects of friction and large deformation” Med. Eng. Phys., Vol. 19, No. 6, pp. 512-517