簡易檢索 / 詳目顯示

研究生: 胡海平
Hu, Hai-Ping
論文名稱: 蒸汽流場作用下之紊流薄膜凝結熱傳
Heat transfer in turbulent film condensation with external flow of vapor
指導教授: 陳朝光
Chen, Cha’o-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 162
中文關鍵詞: 紊流薄膜凝結偏心率
外文關鍵詞: turbulent, film, condensation, eccentricity
相關次數: 點閱:112下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係探討於外部蒸汽流場作用下的紊流薄膜凝結熱傳,研究的熱傳裝置包括了水平橢圓管、圓球、斜圓管以及半橢圓體等。建模過程以Colburn Analogy來預測高速蒸汽下的汽液界面剪力,並採用Kato (1968)的紊流模式,而蒸汽邊界層的切線流速則以勢流理論來決定。本文中探討層流、紊流以及層流轉換成紊流等三種流場下的薄膜凝結熱傳特性。研究結果顯示,於高速蒸汽下之紊流薄膜凝結熱傳,具有比層流凝結更高的熱傳係數。而由於隨著凝結液之雷諾數的增加,轉換成紊流凝結模式前的層流凝結區域所佔的範圍不大,雖然對於局部熱傳有所影響,但對於平均熱傳的影響則較不顯著。
    此外,文中歸納出影響橢圓管、圓球、斜圓管及半橢圓體等各種熱傳機構的熱傳係數及凝結液膜厚度之相關重要參數,這些參數包括過冷效應、福祿數 (Fr)、雷諾數、系統壓力、橢圓管的偏心率及斜圓管之傾斜角度等。由結果可知,等長軸之水平橢圓管,由於受到外部高速蒸汽勢流的影響,減低橢圓的偏心率會提高熱傳係數。而具傾斜角度之斜圓管,在本文中亦可規劃出一最佳之(管長/管徑)比,以及最佳傾斜角度。
    此外,減低過冷效應、提高福祿數 (Fr) 及增加系統壓力將使文中之四種不同熱傳機構的熱傳率提高。再者,為驗證本文的合理性與正確性,進一步與相關文獻的實驗及理論數據進行比較,結果證實以本文的理論模式,可以成功預估在高速蒸汽下的紊流薄膜凝結熱傳。

    The study investigated heat transfer in turbulent film condensation with external flow of vapor, and the research devices include the horizontal elliptical tube, sphere, inclined circular tube and half oval body. The Colburn analogy is used to define the local liquid-vapor interfacial shear that occurs under high velocity vapor. An eddy diffusivity model along with an expression by Kato (1968) is used to model turbulence. And the high tangential velocity of the vapor flow at the boundary layer is determined by potential flow theory. Film condensation heat transfer coefficients investigated in the present study include laminar condensation, turbulent condensation and transition from laminar to turbulent condensation. The results show that heat transfer in turbulent film condensation under the high velocity vapor has a higher heat transfer coefficient than that in laminar film condensation. Along with the increase in Reynolds number of the condensate film, the range of laminar film condensation before transiting to turbulent condensation is not large. Although the range has some influence on local heat transfer coefficient, it doesn’t have a significant influence on mean heat transfer coefficient.
    Furthermore, the study concludes some important parameters that will influence the heat transfer coefficient and condensate film thickness of various devices like horizontal elliptical tube, sphere, inclined circular tube, and half oval body. And the former parameters include sub-cooling, Froude number, Reynolds number, system pressure, eccentricity of elliptical tube, and inclined angle of tube. As we can know from the results, because of the influence of external high velocity vapor, in the case of a horizontal elliptical tube with a vertical semi-major axis and different eccentricity, the decrease in eccentricity of the elliptical tube will bring out an increase in heat transfer. As for the inclined tube, the study can design an opticmal ratio of length and radius, and an opticmal inclined angle. Decreasing sub-cooling parameters, increasing Froude number, and increasing system pressure will enhance the heat transfer coefficient of the four various devices in the study. Besides, for confirming the reasonability and accuracy of the study, the present results are, then, compared with the results obtained from previously published theoretical and experimental data. And the comparative results confirm that the theory model in the study may be used successfully to estimate the heat transfer in turbulent film condensation under high velocity vapors.

    中文摘要…………………………………………………………………...Ⅰ ABSTRACT………………………………………………………………...Ⅱ 誌 謝………………………………………………………………….…... Ⅳ 目 錄………………………………………………………………………...Ⅴ 表目錄………………………………………………………………..…. Ⅸ 圖目錄……………………………………………..……………………Ⅹ 符號說明………………………………………………………………...ⅩⅧ 第一章、 緒論…………………………………………….…………………1 1-1 前言…………………………………………………………...…1 1-2 文獻回顧………………………………………………..……….3 1-3 研究動機………………………………………………………...8 1-4 本文架構…………………...……………………………………9 第二章水平橢圓管外之紊流薄膜凝結熱傳……………………….11 2-1 物理模式與理論分析………………..…..………….…………12 2-1-1 橢圓極座標系統….…….……...…………...…………..…...…12 2-1-2 橢圓極座標系統之建立……………………………………….12 2-2-1 紊流模式之統御方程式建立與求解………………...………...15 2-1-2考慮層流區域效應之紊流凝結熱傳…………………………21 2-2 數值方法….…………….……...………………………23 2-3 結果與討論…………………………….…….…………………24 2-3-1紊流模式之凝結熱傳…………………………..………………24 2-3-1.1凝結液膜無因次厚度之分佈………………………………...24 2-3-1.2凝結液局部紐賽數之分佈……………………………………24 2-3-1.3沿液膜厚度方向之無因次速度…………………………...….25 2-3-1.4沿液膜厚度方向之無因次溫度………………………………25 2-3-1.5 Fr、Re、S、 對平均熱傳的影響…………………………..26 2-3-2層流區域轉換至紊流區域之凝結熱傳………………………28 2-3-2.1凝結液膜無因次厚度之分佈………………………………...28 2-3-2.2沿液膜厚度方向之無因次速度………………………………29 2-3-2.3沿液膜厚度方向之無因次溫度………………………………29 2-3-2.4偏心率、過冷效應及福祿數對層流轉換紊流的效應……….30 2-3-2.5層流凝結轉換為紊流凝結液之局部熱傳……………………31 2-3-2.6過冷效應及系統壓力對平均熱傳的影響……………………31 2-3-2.7低Fr下偏心率對層流凝結熱傳與紊流凝結熱傳的影響…...32 2-3-2.8 Re對平均熱傳的影響………………………………………..32 2-3-2.9 相關文獻的比較及探討………………………………..…….32 2-3-2.10 熱傳效果的評估與探討…………………………………….33 第三章、等壁溫圓球之紊流薄膜凝結熱傳……...……..……66 3-1 物理模式與理論分析…………………………………….66 3-2 數值方法……...….…………..…………..…………………73 3-3 結果與討論 …………………………………………………73 3-3.1 過冷參數及福祿數對凝結液膜厚度之影響…………………..74 3-3.2紊流凝結液膜無因次速度及溫度的分佈……………………..74 3-3.3過冷效應及福祿數對凝結液膜雷諾數之影響………………..75 3-3.4過冷效應、福祿數及Pr對凝結液熱傳係數之影響………….75 3-3.5過冷效應、福祿數及系統壓力對平均熱傳係數之影響……..76 3-3.6 F值與平均熱傳之關係及相關文獻比較………………………76 第四章、斜圓管外之紊流薄膜凝結熱傳…………………………………90 4-1 物理模式與理論分析…..…..………….……………………91 4-2 數值方法……………………..……………………………..98 4-3 結果與討論………………………………………………..98 4-3.1 紊流凝結液膜厚度之結果……………………………………...99 4-3.2 局部熱傳係數………………………………………………….100 4-3.3 紊流凝結之局部雷諾數……………………………………....101 4-3.4 局部軸向圓周平均熱傳係數……………………………..…..101 4-3.4平均熱傳係數……………………………………………..…..101 第五章、半橢圓對稱物體之紊流薄膜凝結熱傳……………..……118 5-1 物理模式與理論分析…………….…………………………...118 5-2 數值方法…………………..…………………………..126 5-3 結果與討論……………..……………………………………126 5-3.1 過冷參數、Fr、Pr對凝結液膜厚度之影響…………………..127 5-3.2 過冷參數、福祿數、Pr對局部熱傳之影響…………………..127 5-3.3 無因次速度與無因次溫度之分佈…………………………….128 5-3.4 過冷效應、系統壓力對平均熱傳的影響……………………..129 第六章、綜合結論與未來展望…………………………………………..143 6-1 綜合結論………………………………………………….143 6-2 未來發展方向.……………………………………………...…147 參考文獻………………………………………….…………………….148 附錄A 數值方法流程圖………………………………………………….160 自述……….………………………………………………………………161

    【1】 Sang, II Lee., and Hee, Cheon No., 1998, “Improvement of direct contact condensation model of relap5/mod3.1 for passive high-pressure injection system,” Annals of Nuclear Energy, Vol. 25, pp. 677-688.
    【2】 Hun Ju, Seong, Cheon No, Hee, and Mayinger, Franz., 2000, “Measurement of heat transfer coefficients for direct contact condensation in core makeup tanks using holographic interferometer,” Nuclear Engineering and Design, Vol. 199, pp. 75-83.
    【3】 Brown, G., 1951, “Heat transmission by condensation of steam on a spray of water drops,” Inst. Mech. Engers. Proc. Discussion on Heat Transfer, pp.49-52.
    【4】 Brouwers H. J. H., 1992, “Film models for transport phenomena with fog formation: The fog film model,” Int. Heat and Mass Transfer, Vol. 35, pp. 13-28.
    【5】 Brouwers, H. J. H., Van Der Geld, and C. W. M., 1996, “Heat transfer, condensation and fog formation in crossflow plastic heat exchangers,” Int. J. Heat and Mass Transfer, Vol. 39, pp. 391-405.
    【6】 Rose, J. W., 2001, “Dropwise condensation theory and experiment: A Review,” Imeche. J. Power and Energy, Vol. 216. pp. 115-127.
    【7】 Woodruff, D. W. and Westwater, J.W., 1981, “Steam condensation on various gold surfaces,” J. Heat Transfer,” Vol. 103, pp. 685-692.
    【8】 O’Nell, G. A. and Westwater, J. W. 1984, “Dropwise condensation of steam on electroplated silver surfaces,” Int. J. Heat and Mass Transfer, Vol. 27, pp. 1539-1549.
    【9】 Nash, C. A. and Westwater, J. W., 1987, “A study of novel surfaces for dropwise condensation,” Proc. ASME-JSME Thermal Eng. Conf. Honolulu, 2, pp. 485-491.
    【10】 Nusselt, W., 1916, “Die oberflachenkondensation des wasserdampfes,” Zeitschr. Ver Deutsch. Ing. 60, pp. 541-569.
    【11】 Gregorig, R., Kern, J. and Turek, 1974, ”Improved correlation of film condensation data based on or more rigorous application of similarity parameters,” Warme-und Stoffubertragung, Vol.7, pp.1-13.
    【12】 Rohsenow, W. M., 1956, “Heat transfer and temperature distribution in laminar-film condensation,” Trans. ASME, Vol. 78, pp. 1645-1648.
    【13】 Sparrow, E. M. and Gregg, J.L., 1959, “A boundary-layer treatment of laminar film condensation,” Trans. ASME, J. Heat Transfer, Vol.81, pp.13-18.
    【14】 Chen, M. M., 1961, “An analytical study of laminar film condensation: part 1-flat plates,” Trans. ASME, J. Heat Transfer, Vol.83, pp.48-54.
    【15】 Koh, J. C. Y., 1961, “An integral treatment of two-phase boundary layer in film condensation,” Trans. ASME, J. Heat Transfer, Vol.83, pp.359-362.
    【16】 Sugawara, S., Michiyoshi, I. and Minamiyama, T., 1956, “The condensation of vapour flowing normal to a horizontal pipe,” Proc. 6th Jap. Nat. Cong. App. Mech, Paper 3-4, pp.385.
    【17】 Le Fevre, E. J. and Mandelsweig, S. I., 1960, “The effect of vertically downward velocity on the heat transfer from stream-nitrogen mixtures condensing on a horizontal cylinder,” MSc Thesis, Univ. London.
    【18】 Mayhew, Y. R. and Aggarwal, J. K., 1973, “Laminar film condensation with vapour drag on a flat surface,” Int. J. Heat Mass Transfer, Vol.16, pp.1944-1949.
    【19】 Nicol, A. A. and Wallace, D. J., 1974, “The influence of vapour shear force on condensation on a cylinder,” Inst. Chem. Eng. Symp., Ser.38, p.1
    【20】 Nobbs, D. W., 1975, “The effect of downward vapour velocity and inundation on the condensation rates on horizontal tube banks,” PhD Thesis Univ. of Bristol, U.K.
    【21】 Asano, K., Nakano, Y. and Inaba, M., 1979, “Forced convection film condensation of vapours in the presence of noncondensable gas on a small vertical fiat plate,” J. Chem. Eng. Jpn., Vol.12, No.3, pp.196.
    【22】 South, V. and Denny, V. E., 1972, “The vapor shear boundary condition for laminar film condensation,” Trans. ASME. J. Heat Transfer., Vol.94, pp.248-249.
    【23】 Cess, R. D., 1960, “Laminar-film condensation on a flat plate in the absence of a body force,” Zeitschrift fur Angewandte und Physik, Vol.11, pp.426-433.
    【24】 Koh, J. C. Y., 1962, “Film condensation in a forced convection boundary layer flow,” Int. J. Heat Mass Transfer, Vol.5, pp.941-954.
    【25】 Shekriladze, I. G. and Gomelauri, V. I., 1966, “Theoretical study of laminar film condensation of a flowing vapour,” Int. J. Heat Mass Transfer, Vol.9, pp.581-591.
    【26】 Denny, V. E. and Mills, A. F., 1969, “Laminar film condensation of a flowing vapor on a horizontal cylinder at normal gravity,” Trans. ASME J. Heat Transfer, Vol.91, pp.495.
    【27】 Jacobs, H. R., 1966, “An integral treatment of combined body force and forced convection in laminar film condensation,” Int. J. Heat Mass Transfer, Vol.9, pp.637-648.
    【28】 Fujii, T. and Uehara, H., 1972, “Laminar film condensation on a vertical surface,” Int. J. Heat Mass Transfer,” Vol.15, pp.217-233.
    【29】 Gaddis, E. S., 1979, “Solution of the two phase boundary layer equations for laminar film condensation of vapour flowing perpendicular to a horizontal cylinder,” Int. J. Heat Mass Transfer, Vol.22, pp.371.
    【30】 Fujii, T., Honda, H. and Oda, K., 1979, “Condensation of steam on a horizontal tube-the influence of on coming velocity and thermal condition at the tube wall,” Condensation Heat Transfer, Proc. 18th Nat. Heat Transfer. Conf. ASME, pp.35-43.
    【31】 Lee, W. C. and Rose, J. W., 1982, “Film condensation on a horizontal tube-effect of vapour velocity,” Proc. 7th , Int. Heat Transfer Conf., Munich, Vol.5, pp.101-106.
    【32】 Truckenbrodt, E., 1956, “Ein einfaches naherungsverfahrenzum berechnen der laminaren riebungsicht mit absangung,” Forschung Ing.
    【33】 Dhir, V. K. and Lienhard, J.H., 1971, “Laminar film condensation on plane and axi-symmetric bodies in non-uniform gravity,” Trans. ASME. J. Heat Transfer, Vol.93, No.1, pp.97-100.
    【34】 Karimi, A., 1977, “Laminar film condensation on helical refiux condensers and related configurations,” Int. J. Heat Mass Transfer, Vol.20, pp.1137-1144.
    【35】 Ali, A. F. M. and McDonald, T. W., 1977, “Laminar film condensation on horizontal elliptical cylinders: a first approximation for condensation on inclined tubes,” ASHRAE Trans., Vol.83, No.2, pp.242-249.
    【36】 Cheng. S., and Tao, J., 1988, “Study of condensation heat transfer for ellipticl pipes in stationary saturate vapor,” Proceedings of National Heat transfer conference, Vol. 2, ASME HTD-Vol. 96, pp. 405-408.
    【37】 Wang, J. C. Y., Ma, Y. and Liu, J., 1991, “Vapor condensation on a horizontal elliptical tube,” Proceedings of the XVIIIth International Congress of Refrigeration, Paper No. 160, Montreal, Canada.
    【38】 Yang, S. A. and Chen, C. K., 1993, “Filwwise condensation on noisothermal horizontal elliptical tubes with surface tension,” J. of Thermophysics and Heat Transfer Vol. 7, No. 4, pp. 729-732.
    【39】 Fieg, G. P. and Roetzel, W., 1994, “Calculation of alminar film condensation in/on inclined elliptical tubes,” Int. J. Heat and Mass Transfer, Vol. 37(4), pp. 619-624.
    【40】 Yang, S. A. and Chen, C. K., 1994, “Laminar film condensation on a horizontal elliptical tubes with variable wall temperature,” J. of Heat Transfer Vol. 116, pp. 1046-1049.
    【41】 Panday, P. K., 1987, “Laminar film condensation of downward flowing vapor on a horizontal elliptical cylinder – a numerical solution,” Int. Communication on Heat and Mass Transfer, Vol. 14, pp. 33-43.
    【42】 Yang, S. A. and Hsu, C. H., 1997, “Mixed–convection film condensation on a horizontal elliptical tube with uniform surface heat flux,” Numerical Heat Transfer; Part A: Applications, Vol. 32, pp. 85-95.
    【43】 Memory, S. B., Adams, V. H. and Marto, P. J., 1997, “Free and forced convexction laminar film condensation on horizontal elliptical tubes,” Int. Heat and Mass Transfer, Vol. 40, No. 14, pp. 3395-3406.
    【44】 Yang, S. A. and Hsu, C. H., 1999, “Mixed – convection film condensation on a horizontal elliptical tube with variable wall temperature,” J. of the Chinese Society of Mechanical Engineers, Vol. 20, No. 4, pp. 373-384.
    【45】 Yang, S. A. and Chen, C. K., 1993, “Laminar film condensation on a horizontal elliptical tube with iniform surface heat flux and suction at the porous wall,” J. of the Chinese Society of Mechanical Engineers, Vol. 14, No. 1, pp. 93-100.
    【46】 Yang, S. A. and Chen, C. K., 1994, “Filmwise condensation on a horizontal elliptical tube embedded in porous media,” Chemical Engineering Communications, Vol. 127, pp. 125-135.
    【47】 Yang, S. A. and Chen, C. K., 1997, “Filmwise condensation on a vertical porous ellipsoid with uniform suction velocity,” Chemical Engineering Communications, Vol. 160, pp. 123-135.
    【48】 Wang, C. C. and Chen, C. K., 2002, “Combined free and forced convection film condensation on a finite-size horizontal wavy plate,” ASME J. Heat Transfer, Vol. 124, pp. 573-576.
    【49】 Bergles, A. E., 1985, “Techniques to augment heat transfer,” Handbook of Heat Transfer Applications, Ch.3, McGraw-Hill, New York.
    【50】 Fuijj, T., Uehara, H. and Kurata, C., 1972, “Laminar filmwise condensation of flowing vapor on a horizontal condenser,” Int. J. Heat Mass Transfer, Vol.15, pp. 235-246.
    【51】 Honda, H., Nozu, S., Uchima, B. and Fuijj, T., 1986, “Effect of vapor velocity on film condensation of R-113 on horizontal tubes ina across flow,” Int. J. Heat Mass Transfer, Vol.29, pp. 429-438.
    【52】 Lee, W. C., Rahbar, S. and Rose, J. W., 1984, “Film condensation of refrigerant 113 and ethanediol on a horizontal tube-effect of vapor velocity,” ASME J. Heat Transfer, Vol. 106, pp. 524-530.
    【53】 Memory, S. B. and Rose. J. W., 1986, “Film condensation of ethylene glycol on a horizontal tube at high vapor velocity,” Proceedings of the 8th International Heat Transfer Conference, San Francisco, CA, Vol. 4, pp. 1607-1612.
    【54】 Sarma, P. K., Subrahmanyan, T., Dharma Rao, V. and Rao, P. V. S. K., 1993, “Condensation of vapor flowing normal to the axis of a horizontal tube,” Engineering Foundation Conference, Condensation and Condenser Design, Proceedings of ASME, New York.
    【55】 Michael, A. G., Rose, J. W., and Daniels, L. C., 1989, “Forced convection condensation on a horizontal tube-experiments with vertical downflow of steam,” ASME J. Heat Transfer, Vol. 111, pp. 792-797.
    【56】 Sarma, P. K. and Vijayalakshmi, B. and Mayinger, F., 1998, “Turbulent Film Condensation on a Horizontal Tube with External Flow of Pure Vapors,” Int. J. Heat and Mass Transfer, Vol. 41, pp. 537-545.
    【57】 Jakob, M. 1949, Heat Transfer, Vol. 1. John Wiley & Sons, New York.
    【58】 Colburn, A. P., 1933, “A method of correlation forced convection heat transfer data and a comparison with fluid friction,” Trans. AICHE, Vol. 29, pp. 174-210.
    【59】 Bejan, Adrian, 1995, Convection Heat Transfer, John Wiley & Sons, New York.
    【60】 Kato, H., Shiwaki, N. N. and Hirota, M., 1968, “On the turbulent heat transfer by free convection from a vertical plate,” Int. of Heat and Mass Transfer, Vol. 11, pp. 1117-1125.
    【61】 Mandelzwing, S. I., 1960, “The effect of vertically downward velocity on the heat transfer from a steam-nitrogen mixture condensation on a horizontal cylinder,” MSc Thesis, Queen Mary College, University of London, United Kingdom.
    【62】 Nobbs, D. W., and Mayhew, Y. R., 1976, “Effect of downward vapor velocity and inundation rates on horizontal tubes and tube banks,” Symp. Steam Turbine Condensers, NEL Report No 619, pp. 39-52.
    【63】 Nical, A. A., and Wallace, D. J., 1974, “The influence of vapor shear force on condensation on a cylinder,” Inst. Chem. Eng. Symp. Ser., Vol. 38, pp. 1-19.
    【64】 Nical, A. A., and Wallace, D. J., 1976, “Condensation with Appreciable Vapor Velocity and Variable Wall Temperature,” Symp. Steam Turbine Condensers, NEL Report No 619, pp. 27-38.
    【65】 Yang, S. A. and Hsu, C. H., 1997, “Free-and forced-convection film condensation from a horizontal elliptic tube with a vertical plate and horizontal tube as special cases,” Int. J. of Heat and Fluid Flow, Vol. 18, pp. 567-574.
    【66】 Yang, S. A., Chen, C. K., 1993, “Role of surface tension and ellipticity in laminar film condensation on a horizontal elliptical tube,” Int. J. of Heat and Mass Transfer, Vol. 36, pp. 3135-3141.
    【67】 Yang, J. W., 1973, “Laminar film condensation on a sphere,” ASME J. of Heat Transfer, Vol. 95C, pp. 174-178.
    【68】 Hu, H., and Jacobi, A. M., 1992, “Vapor shear and pressure gradient effects during filmwise condensation from a flowing vapor onto a sphere,” Experimental thermal and Fluid Science, Vol. 5, pp. 548-555.
    【69】 Jacobi, A. M., 1992, “Filmwise condensation from a flowing vapor onto isothermal, axisymmetric bodies,” J. of Thermophysics and Heat transfer, Vol. 6, pp. 321-325.
    【70】 Dhir, V. K., 1975, “Quasi-steady laminar film condensation of steam on copper spheres,” ASME J. of Heat Transfer, Vol. 97, pp. 347-351.
    【71】 Hsu, C. H. and Yang, S. A., 1997, “Mixed convection film condensation from downward flowing vapors onto a sphere with uniform wall heat flux,” Heat and Mass transfer, Vol. 32, pp. 985-391.
    【72】 Hsu, C. H. and Yang, S. A., 1997, “Mixed convection film condensation from downward flowing vapors onto a sphere with variable wall temperature,” Heat and Mass transfer, Vol. 33, pp. 85-91.
    【73】 Hsu, C. H., 2001, “Laminar film condensation from downward flowing superheated vapors onto a non-isothermal sphere,” Heat and Mass transfer, Vol. 38, pp. 151-158.
    【74】 Jakob, M. 1959, Heat Transfer, Vol. 2. John Wiley & Sons, New York.
    【75】 Rao, V. D., Saibabu, J. and Sarma, P. K., 1992, “Condensation heat transfer on turbulent falling liquid films,” Applied Scientific Research, Vol. 49, pp. 31-48.
    【76】 Hassan K. E. and Jakob, M., 1958, “Laminar film condensation of pure saturated vapor on inclined cylinders,” ASME J. Heat Transfer, Vol. 80, pp. 887.
    【77】 Selin, G. 1961, “Heat transfer by condensation pure vapors outside inclined tubes,” Proceeding of the Int. Heat Transfer Conference 2, pp. 279-289.
    【78】 Mosaad, M., 1999, “Combined free and forced convection laminar film condensation on an inclined circular tube with isothermal surface,” Int. J. of Heat and Mass Transfer, Vol. 42, pp. 4017-4025.
    【79】 Mosaad, M., 2000, “Forced convection film condensation of flowing vapour on an inclined circular tube,” Heat and Mass Transfer, Vol. 36, pp. 1-6.
    【80】 Holman, J. P., 2001, Heat Transfer. Mc Graw-Hill, New York.
    【81】 Kirchhoff, R. H., 1985, Potential Flows, Marcel Dekker, INC. New York.
    【82】 White, F. M., 1986, Fluid Mechanics, Mc Graw-Hill, Singapore.

    下載圖示 校內:2004-07-22公開
    校外:2004-07-22公開
    QR CODE