| 研究生: |
曾顥宇 Zeng, Hao-Yu |
|---|---|
| 論文名稱: |
開發可同步檢測植物組織內金屬與代謝物的影像質譜平台並以阿拉伯芥苗為例 Development of a MALDI imaging method to visualize the distribution of metals and metabolites in Arabidopsis thaliana seedlings |
| 指導教授: |
賴思學
Lai, Szu-Hsueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 質譜 、基質輔助雷射脫附游離法 、影像質譜術 |
| 外文關鍵詞: | mass spectrometry, MALDI, imaging mass spectrometry |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基質輔助雷射脫附游離影像質譜術(Matrix-assisted laser desorption/ionization imaging mass spectrometry ,MALDI- IMS)是一種可呈現有機化合物組織切片上空間分佈的質譜影像技術。然而,該技術在檢測金屬元素方面面臨挑戰。本研究中,將螯合試劑1-(2-pyridylazo)-2-naphthol (PAN)添加到傳統的MALDI基質(即α-cyano-4-hydroxycinnamic acid and 2,5-dihydroxybenzoic acid)中,以改善對金屬元素的檢測能力,並運用MALDI-IMS檢測阿拉伯芥(Arabidopsis thaliana)幼苗中的有機代謝物與金屬分布。
實驗結果顯示,PAN基質能夠與多種金屬如Li、Na、K、Cu、Pb、Mn、Fe、Co、Ni等形成穩定的錯合物,並在MALDI-TOF質譜中產生清晰的訊號。通過模擬測試,質譜數據驗證了本方法在金屬分佈分析中的準確性和可行性。此外,藉由添加PAN基質MALDI-TOF展現出相對定量的能力,對銅離子的檢測極限可達60 μM。
在植物樣品分析中,MALDI-IMS成功檢測到阿拉伯芥根部中的鉛、銅和鎳在分佈情況,實驗結果與先前的文獻報導相符,植物中重金屬主要累積在植物根部組織,業與莖的累積量則較低,證實了本質譜影像法在植物金屬分佈研究中的可靠性。本研究開發的MALDI-IMS平台還能同時檢測植物代謝物分佈,通過與高解析液相層析質譜儀(Liquid chromatography–high resolution mass spectrometry , LC–HRMS)。結果比對,成功鑑定了精氨酸和麩醯胺酸等代謝物的分佈與相對含量,並且MALDI-IMS結果與LC-HRMS相符,證實了該平台在代謝物分析中的準確性和相對定量能力。
總而言之,本研究開發的MALDI-IMS平台為植物金屬和代謝物分析領域提供了一個新的前處理方法。該平台能夠同時獲得植物組織中代謝物與金屬相對含量和空間分佈信息,為深入理解植物的生理過程和環境適應機制提供了新的研究途徑。
This study demonstrates the use of a PAN:CHCA:DHB matrix in MALDI-IMS for visualizing the spatial distribution of both metals and organic compounds in Arabidopsis thaliana seedlings. The method was validated with metal distribution simulation tests and LC-MS.
1.Dreisewerd, K., The desorption process in MALDI. Chemical reviews 2003, 103 (2), 395-426.
2.Karas, M.; Krüger, R., Ion formation in MALDI: the cluster ionization mechanism. Chemical reviews 2003, 103 (2), 427-440.
3.Qiao, Z.; Lissel, F., MALDI matrices for the analysis of low molecular weight compounds: rational design, challenges and perspectives. Chemistry–An Asian Journal 2021, 16 (8), 868-878.
4.Gode, D.; Volmer, D. A., Lipid imaging by mass spectrometry–a review. Analyst 2013, 138 (5), 1289-1315.
5.Strupat, K.; Karas, M.; Hillenkamp, F., 2, 5-Dihydroxybenzoic acid: a new matrix for laser desorption—ionization mass spectrometry. International journal of mass spectrometry and ion processes 1991, 111, 89-102.
6.McDonnell, L. A.; Heeren, R. M., Imaging mass spectrometry. Mass spectrometry reviews 2007, 26 (4), 606-643.
7.Luxembourg, S. L.; Mize, T. H.; McDonnell, L. A.; Heeren, R. M., High-spatial resolution mass spectrometric imaging of peptide and protein distributions on a surface. Analytical chemistry 2004, 76 (18), 5339-5344.
8.Caprioli, R. M.; Farmer, T. B.; Gile, J., Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Analytical chemistry 1997, 69 (23), 4751-4760.
9.Schwamborn, K.; Caprioli, R. M., Molecular imaging by mass spectrometry—looking beyond classical histology. Nature Reviews Cancer 2010, 10 (9), 639-646.
10.Baker, T. C.; Han, J.; Borchers, C. H., Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging. Current opinion in biotechnology 2017, 43, 62-69.
11.van der Wiel, B. K. I.; Stauber, J.; Dekker, L.; Guzel, C.; Kros, J.; Luider, T.; Heeren, R., Sample preparation issues for tissue imaging by imaging MS (2009). Proteomics 9, 2622-2633.
12.Takahashi, K.; Kozuka, T.; Anegawa, A.; Nagatani, A.; Mimura, T., Development and application of a high-resolution imaging mass spectrometer for the study of plant tissues. Plant and Cell Physiology 2015, 56 (7), 1329-1338.
13.Wang, J.; Yang, E.; Chaurand, P.; Raghavan, V., Visualizing the distribution of strawberry plant metabolites at different maturity stages by MALDI-TOF imaging mass spectrometry. Food Chemistry 2021, 345, 128838.
14.Dreisbach, D.; Petschenka, G.; Spengler, B.; Bhandari, D. R., 3D-surface MALDI mass spectrometry imaging for visualising plant defensive cardiac glycosides in Asclepias curassavica. Analytical and Bioanalytical Chemistry 2021, 413, 2125-2134.
15.Festa, R. A.; Thiele, D. J., Copper: an essential metal in biology. Current Biology 2011, 21 (21), R877-R883.
16.Kumar, V.; Pandita, S.; Sidhu, G. P. S.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A. S.; Setia, R., Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2021, 262, 127810.
17.Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Murtaza, G.; Dumat, C.; Shahid, M., Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 2020, 259, 127436.
18.Michaud, A. M.; Chappellaz, C.; Hinsinger, P., Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant and soil 2008, 310, 151-165.
19.Wright, D. A.; Welbourn, P., Environmental toxicology. Cambridge University Press: 2002; Vol. 11.
20.Rahman, H.; Sabreen, S.; Alam, S.; Kawai, S., Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. Journal of plant nutrition 2005, 28 (3), 393-404.
21.Kukkola, E.; Rautio, P.; Huttunen, S., Stress indications in copper-and nickel-exposed Scots pine seedlings. Environmental and Experimental Botany 2000, 43 (3), 197-210.
22.Nas, F. S.; Ali, M., The effect of lead on plants in terms of growing and biochemical parameters: a review. MOJ Ecol. Environ. Sci 2018, 3 (4), 265-268.
23.Zhang, J.; Tian, S.; Lu, L.; Shohag, M.; Liao, H.; Yang, X., Lead tolerance and cellular distribution in Elsholtzia splendens using synchrotron radiation micro-X-ray fluorescence. Journal of hazardous materials 2011, 197, 264-271.
24.Yadav, R.; Singh, G.; Santal, A. R.; Singh, N. P., Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources. Journal of Environmental Management 2023, 336, 117730.
25.Sagner, S.; Kneer, R.; Wanner, G.; Cosson, J.-P.; Deus-Neumann, B.; Zenk, M. H., Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 1998, 47 (3), 339-347.
26.Peng, H.; Wang, Y.; Tan, T. L.; Chen, Z., Exploring the phytoremediation potential of water hyacinth by FTIR Spectroscopy and ICP-OES for treatment of heavy metal contaminated water. International Journal of Phytoremediation 2020, 22 (9), 939-951.
27.Shen, Y., Distribution and speciation of lead in model plant Arabidopsis thaliana by synchrotron radiation X‐ray fluorescence and absorption near edge structure spectrometry. X‐Ray Spectrometry 2014, 43 (3), 146-151.
28.Becker, J. S.; Dietrich, R.; Matusch, A.; Pozebon, D.; Dressler, V., Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2008, 63 (11), 1248-1252.
29.Matsumoto, K.; Matsunami, A.; Oyama, H.; Kitagawa, K., Identification of oxidation states of metal oxides by MALDI-TOF MS. Microchemical Journal 2005, 81 (2), 195-200.
30.Ghazaryan, K.; Movsesyan, H.; Ghazaryan, N.; Watts, B. A., Copper phytoremediation potential of wild plant species growing in the mine polluted areas of Armenia. Environmental pollution 2019, 249, 491-501.
31.Zlobin, I. E.; Kartashov, A. V.; Shpakovski, G. V., Different roles of glutathione in copper and zinc chelation in Brassica napus roots. Plant Physiology and Biochemistry 2017, 118, 333-341.
32.Ji YuanYuan, J. Y.; Li Qiang, L. Q.; Liu GuoSheng, L. G.; Selvaraj, G.; Zheng ZhiFu, Z. Z.; Zou JiTao, Z. J.; Wei YangDou, W. Y., Roles of cytosolic glutamine synthetases in Arabidopsis development and stress responses. 2019.
校內:2029-08-15公開