簡易檢索 / 詳目顯示

研究生: 黃彥彰
Huang, Yen-Chang
論文名稱: 藉由金奈米-galectin-1複合物加強MCF-7人類乳癌細胞的細胞凋亡
Enhancement of Apoptosis in MCF-7 Human Breast Cancer Cells by AuNP-Galectin-1 Complex
指導教授: 吳昭良
Wu, Chao-Liang
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 46
中文關鍵詞: 金奈米細胞凋亡
外文關鍵詞: apoptosis, galectin-1, gold nanoparticle
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Galectin-1(Gal1)是可與β-galactoside binding 的lectins 蛋白,具有很多的生物功能,像是細胞增生、移動、凋亡、發炎、轉移、免疫調節等。金奈米粒子由於生物相容性高、尺寸小、容易製備的特性,且尚未被報導有毒性,而被廣泛的使用。在這裡,我們建立的AuNP-Gal1 複合物,並且探討它的生物應用性。AuNP-Gal1 在高鹽溶液中,非常的穩定,且經由TEM (transmission electron micrograph) 顯示,AuNP-Gal1 在0.1M NaCl 中,分散性很好,顆粒的大小直徑約15 奈米。AuNP-Gal1 會經由receptor-mediated endocytosis 被Jurkat T cells 和MCF-7 human breast cancer cells 所吞入。AuNP-Gal1 和MCF-7 cells 作用的量都遠比等量的galectin-1 跟AuNP-BSA 來的多。而lactose 則會跟AuNP-Gal1
    的CRD (carbohydrate recognition domain)結合,進而去降低AuNP-Gal1被細胞吃進去的量。結合在金奈米表面上的galectin-1 是屬於還原態的。AuNP-Gal1 比galectin-1 更快、更多的量被MCF-7 cells 所吞入。在我們的研究,AuNP-Gal1 在同樣的galectin-1 劑量下,更能加強抑制MCF-7 cells 細胞增生,誘導endonuclease G 入核,和Bcl-2 表現量下降。這可能是在癌症治療上,一個新的方針。

    Galectin-1(Gal-1) is a β-galactose-binding lectin and has multiple biological functions, such as cell proliferation, migration, apoptosis, inflammation, metastasis and immunoregulation. Colloidal gold nanoparticles (AuNPs) have been extensively used in biological applications due to their biocompatibility, dimension, ease of preparation and characterization, and also have a history of use without known inherent cytotoxicity. In the present study, we developed an AuNP-Gal1 complex and explored its bio-applications. It was highly stable in high salt solution. TEM (transmission electron micrograph) photo revealed the AuNP-Gal1 is mono-dispersed in 0.1M NaCl buffer with the mean particle diameter of 15 nm. AuNP-Gal1 was taken by Jurkat T cells and MCF-7 human breast cancer cells via receptor-mediated endocytosis. AuNP-Gal1 can interact with
    MCF-7 cells, and the amount is more than the same dosage galectin-1 and AuNP-BSA. As lactose can bind to the CRD (carbohydrate recognition domain) of AuNP-Gal1 and therefore reduced the amount of AuNP-Gal1 taken in by cells. Galectin-1 bound on AuNP surface was reduced form. The accumulation of AuNP-Gal1 inside MCF-7 cells was quicker and higher than that of free galectin-1. In our assay, AuNP-Gal1 enhanced inhibition in MCF-7 cells proliferation, induced nuclear translocation of more
    endonuclease G, and reduced Bcl-2 epression compared to the equal dose of free galectin-1. It may be a new approach for biological application in the treatment of cancers.

    Introduction…………………………………………………….……….1 Galectins………………………………………………….………..1 Galectin-1……………………………………………….…………2 Gold nanoparticle(AuNP)…………………………………………4 Aim of this study………………………………………………………..5 Materials and Methods………………………………………………….6 表現recombinant galectin-1 蛋白質………………………………6 純化recombinant galectin-1 蛋白質 (TALON Resin)……………6 純化recombinant galectin-1 蛋白質 (FPLC)……………………..8 SDS-PAGE 蛋白質電泳…………………………………………..9 Westen blot…………………………………………………………9 Cell Proliferation Assay……………………………………...........10 AuNP 和galectin-1 的結合……………………………………….10 Hemagglutination…………………………………………… ……11 Silver stain…………………………………………………………11 Result……………………………………………………………………13 Galectin-1 的純化………………………………………………….13 Galectin-1 有正常的生物活性…………………………………….14 AuNP-Gal1 在高鹽溶液下穩定且分散性好…..………………….15 AuNP-Gal1 仍保有Hemagglutination 和跟Jurkat cells 結合的特性……………………………………………16 AuNP-Gal1 會藉由receptor 跟MCF-7 cells 作用………….……..16 AuNP-Gal1 會抑制MCF-7 的細胞增生…………………….……..17 AuNP-Gal1 增加和細胞作用的galectin-1 和金奈米的量... ……..18 AuNP-Gal1 會誘導endonuclease G 入核和 降低Bcl-2 的表現量…………………………….………………….19 Discussion…………………………………………….…………………21 Referances………………………………………………………………24 Figures…………………………………………………………………..31 自述……………………………………………………………………..46

    Adams, L., Scott, G.K., and Weinberg, C.S. (1996). Biphasic modulation of
    cell growth by recombinant human galectin-1. Biochim. Biophys. Acta, 1312,
    137–144.

    Almkvist, J. and Karlsson, A. (2004) Galectins as inflammatory mediators.
    Glycoconj. J., 19, 575–581.

    Amano, M., Galvan, M., He, J., and Baum, L.G. (2003) The ST6Gal I
    sialyltransferase selectively modifies N-glycans on CD45 to negatively
    regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T
    cell death. J. Biol. Chem., 278, 7469–7475.

    Barondes S.H., Cooper D.N.W., Gitt M.A. and Leffler H.(1994) Galectins:
    structure and function of a large family of animal lectins. J. Biol. Chem. 269:
    20807–20810

    Barondes, S.H., Castronovo, V., Cooper, D.N., Cummings, R. D.,Drickamer,
    K., Feizi, T., Gitt, M.A., Hirabayashi, J., Hughes, C.,Kasai, K., and others.
    (1994) Galectins: a family of animal beta-galactoside binding lectins. Cell, 76,
    597–598.

    Brigger I, Dubernet C, Couvreur P.(2002) Nanoparticles in cancer therapy and
    diagnosis. Adv Drug Deliv Rev ;54:631–51.

    Carlow, D.A., Williams, M.J., and Ziltener, H.J. (2003) Modulation of
    O-glycans and N-glycans on murine CD8 T cells fails to alter annexin V
    ligand induction by galectin 1. J. Immunol., 171, 5100–5106.

    Chang-Hong, R., Wada, M., Koyama, S., Kimura, H., Arawaka, S., Kawanami,
    T., Kurita, K., Kadoya, T., Aoki, M., Itoyama, Y., and others. (2005)
    Neuroprotective effect of oxidized galectin-1 in a transgenic mouse model of
    amyotrophic lateral sclerosis. Exp. Neurol., 194, 203–211.

    Clerch, L.B., Whitney, P., Hass, M., Brew, K., Miller, T., Werner, R., and
    Massaro, D. (1988) Sequence of a full-length cDNA for rat lung
    beta-galactoside-binding protein: primary and secondary structure of the
    lectin. Biochemistry, 27, 692–629.

    Cooper D.N.W. and Barondes S.H.,(1999) God must love galectins: he made
    so many of them. Glycobiology 9: 979–984.

    Cooper DNW.(2002) Galectinomics: finding themes in complexity. Biochim.
    Biophys. Acta 1572: 209–231.

    Danguy, A., Camby, I., and Kiss, R. (2002) Galectins and cancer. Biochim.
    Biophys. Acta, 1572, 285–293.

    Dunphy J.L., Balic A., Barcham G.J., Horvath A.J., Nash A.D. and
    Meeusen E.N., (2000) Isolation and characterization of a novel inducible
    mammalian galectin. J. Biol. Chem. 275: 32106–32113.

    Galvan, M., Tsuboi, S., Fukuda, M., and Baum, L.G. (2000) Expression of a
    specific glycosyltransferase enzyme regulates T cell death mediated by
    galectin-1. J. Biol. Chem., 275, 16730–16737.

    Hector F. Linda G. Baum.(2007) O-Glycosylation Regulates LNCaP Prostate Cancer
    Cell Susceptibility to Apoptosis Induced by Galectin-1.Cancer Res ; 67: (13).
    July 1.

    Hidenori Horie,Toshihiko Kadoya (2004) Galectin-1 plays essential roles in adult
    mammalian nervous tissues. Roles of oxidized galectin-1. Glycoconjugate Journal
    19, 479–489, 2004

    Horie, H. and Kadoya, T. (2000) Identification of oxidized galectin-1 as an
    initial repair regulatory factor after axotomy in peripheral nerves. Neurosci.
    Res., 38, 131–137.

    Hughes, R. C.(2001) Galectins as modulators of cell adhesion. Biochimie 83,
    667–676 .

    Hikita, C. et al. (2001) Induction of terminal differentiation in epithelial
    cells requires polymerization of hensin by galectin 3. J. Cell Biol. 151,
    1235–1146.

    Isabelle Camby, Marie Le Mercier (2006) Galectin-1: a small protein with major
    functions. Glycobiology vol. 16 no. 11 pp. 137R–157R, 2006

    Kadoya, T. and Horie, H. (2005) Structural and functional studies of galectin-1:
    a novel axonal regeneration-promoting activity for oxidized galectin-1.
    Curr. Drug Targets, 6, 375–383.

    Liu, F. T., Patterson, R. J. & Wang, J. L. (2002)Intracellular functions of
    galectins. Biochim. Biophys. Acta. 1572, 263–273.

    Mallucci L, Wells V, Danikas A, Davies D. (2003) Turning cell cycle controller genes
    into cancer drugs. A role for an antiproliferative cytokine (βGBP).
    Biochem Pharmacol;66:1563–9.

    Miura, T., Takahashi, M., Horie, H., Kurushima, H., Tsuchimoto, D., Sakumi, K., and
    Nakabeppu, Y. (2004) Galectin-1beta, a natural monomeric form of galectin-1 lacking
    its six amino-terminal residues promotes axonal regeneration but not cell death. Cell
    Death Differ., 11, 1076–1083.

    Nathaniel L. Rosi, David A. Giljohann, C. Shad Thaxton, Abigail K, Chad A. Mirkin
    (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation.
    Science ,312,1027-1030

    Nickel, W. (2005) Unconventional secretory routes: direct protein export across the
    plasma membrane of mammalian cells. Traffic, 6, 607–614.

    Ochieng, J., Warfieldl, P., Green-Jarvis, B. & Fentie, I. (1999) Galectin-3 regulates
    the adhesive interaction between breast carcinoma cells and elastin. J. Cell. Biochem.
    75, 505–514.

    Paciotti GF, Myer L, Weinreich D, et al. (2004) Colloidal gold: a novel nanoparticle
    vector for tumor directed drug delivery. Drug Deliv;11:169–83

    Rabinovich, G.A., Daly, G., Dreja, H., Tailor, H., Riera, C.M., Hirabayashi, J., and
    Chernajovsky, Y. (1999) Recombinant galectin-1 and its genetic delivery suppress
    collagen-induced arthritis via T cell apoptosis. J. Exp. Med., 190, 385–398.

    Rachana K. Visaria, Robert J. Griffin, Brent W. Williams. (2006) Enhancement of tumor
    thermal therapy using gold nanoparticle–assisted tumor necrosis factor-α delivery.
    Mol Cancer Ther,5,1014-1020

    Roald Ravatn, Valerie Wells,2 Leigh Nelson, David Vettori. (2005) Circumventing Multidrug
    Resistance in Cancer by B-Galactoside Binding Protein, an Antiproliferative Cytokine.
    Cancer Res ; 65,1631-34,

    Van den Brule, F., Califice, S., Garnier, F., Fernandez, P.L., Berchuck, A., and Castronovo, V.
    (2003) Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary
    carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and
    fibronectin. Lab. Invest., 83, 377–386.

    Van der Leij, J., van den Berg, A., Blokzijl, T., Harms, G., van Goor, H.,Zwiers, P., van
    Weeghel, R., Poppema, S., and Visser, L. (2004) Dimeric galectin-1 induces IL-10 production
    in T-lymphocytes: an important tool in the regulation of the immune response. J. Pathol.,204,
    511–518.

    Vas, V., Fajka-Boja, R., Ion, G., Dudics, V., Monostori, E., and Uher, F. (2005) Biphasic
    effect of recombinant galectin-1 on the growth and death of early hematopoietic cells.
    Stem Cells, 23, 279–287.

    Vyakarnam, A., Dagher, S. F., Wang, J. L. & Patterson, R. J. (1997) Evidence for a role for
    galectin-1 in pre-mRNA splicing. Mol. Cell Biol. 17, 4730–4737.

    Wells V, Davies D, Mallucci L. (1999)Cell cycle arrest and induction of apoptosis by β-galactoside
    binding protein (βGBP) in human mammary cancer cell. A potential new approach to cancer control.
    Eur J Cancer;35: 978–83.

    Sango, K., Tokashiki, A., Ajiki, K., Horie, M., Kawano, H., Watabe, K., Horie, H., and Kadoya, T.
    (2004) Synthesis, localization and externalization of galectin-1 in mature dorsal root ganglion
    neurons and Schwann cells. Eur. J. Neurosci., 19, 55–64.

    Tasi CY, Wu CL. (2007) Amelioration of collagen-induced arthritis in rats by nanogold.
    Arthritis Rheum. Feb;56(2):544-54

    Yang R.Y., Hsu D.K., Yu L., Ni J. and Liu F.T., (2001) Cell cycle regulation by galectin-12,
    a new member of the galectin superfamily. J. Biol. Chem. 276: 20252–20260,.

    Yamaoka, K., Mishima, K., Nagashima, Y., Asai, A., Sanai, Y., and Kirino, T. (2000) Expression
    of galectin-1 mRNA correlates with the malignant potential of human gliomas and expression of
    antisense galectin-1 inhibits the growth of 9 glioma cells. J. Neurosci. Res., 59, 722–730.

    Yang Q.S., Ying K., Yuan H.L., Chen J.Z., Meng X.F., Wang Z., Xie Y. and Mao Y.M., (2002)
    Cloning and expression of a novel human galectin cDNA, predominantly expressed in placenta.
    Biochim. Biophys. Acta 1574: 407–411.

    下載圖示 校內:2012-08-08公開
    校外:2012-08-08公開
    QR CODE