簡易檢索 / 詳目顯示

研究生: 呂以翔
Lu, Yi-Hsiang
論文名稱: 量子隱形傳態所需之非古典資源的量化及其應用
Quantifying Nonlocal Resources for Quantum Teleportation and Its Applications
指導教授: 李哲明
Li, Che-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 120
中文關鍵詞: 量子通訊量子糾纏古典過程
外文關鍵詞: Quantum communication, Quantum entanglement, Classical process
相關次數: 點閱:150下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子隱形傳態(Quantum teleportation) 使得通訊者兩端藉由分享最大糾纏的愛因斯坦波多爾斯基羅森粒子對及量子量測,完成兩地的未知態傳輸;然而,最大糾纏在製備上或是分發上的瑕疵、或是遭受竊聽後皆會引入古典元素。在此篇論文中,事先分享好的雙古典粒子亦可用於遙傳通訊,我們以此雙古典粒子建立一個純然古典的模型進行量子隱形傳態的模擬,我們好奇於如果通訊兩端利用古典的模擬方式進行量子遙傳通訊,其古典模擬的方式以及其最強的模仿程度,超越此古典過程模型所能描述的過程意味著“真正的量子隱形傳態",且其共享量子對的狀態以及量測皆具純然量子特性。我們的工作不僅展示量子隱形傳態在實現上可能遇到的問題,更忠實地揭露雙古典粒子能模擬完成純然量子隱形傳態的最大能力。對於三體複合系統之量子遙傳,我們的結果亦可以提供對於其輸出系統的純的三體非局域性之分析,為實現可信賴的三體量子遙傳任務提供了客觀及嚴謹的指標。

    Quantum teleportation enables an arbitrary unknown state to be transferred from a sender to a receiver, which utilizes both the maximally entangled EisteinPodolskyRosen(EPR) pair and quantum measurements. However, the imperfection of manufacturing or distribution in EPR pair would introduce classical element accordingly. Here, we consider a general scenario where classical pair are shared between a sender (Alice) and a remote receiver(Bob), and by which Alice can transmit an unknown state to Bob with the maximum
    success probability. In this case, we investigate how teleportation can be performed with physical properties. Invaliding such classical teleportation protocol implies genuine quantum teleportation wherein both the shared pair state and the measurement are truly quantummechanical. Our work not only shows how faithful teleportation can be realized, but also the best classical teleportation ability that can simulate quantum teleportation with classical pair. For quantum teleportation of tripartite state, our methods can also identify genuinely tripartite nonlocality of output system. Thus we provide a compelling benchmark for implementing genuine tripartite quantum teleportation.

    摘要i Abstract ii 誌謝iii Table of Contents iv List of Tables viii List of Figures ix Nomenclature xi Chapter 1. Introduction 1 1.1. Background . . . . . . . .. . . . . . . . . . . . . . 1 1.2. Motivation . . . . . . . . . . . . . . . . . . . . . 3 1.3. Purpose . . . . . . . .. . . . . . . . . . . . . . 4 1.4. Outline . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 2. Essential Knowledge and Tools 7 2.1. Postulates of quantum mechanics . . . . . . . 7 2.1.1. Postulate 1 – State space . . . . . . . 8 2.1.2. Postulate 2 – Evolution . . . . . . . . . 9 2.1.3. Postulate 3 – Quantum measurement . . . . . . 10 2.1.4. Postulate 4 – Composite system . . . . . . . 12 2.2. Density operator . . .. . . . . . . . . . . . 14 2.3. Quantum tomography . . . . . . . . . . . . . . . 17 2.3.1. Quantum state tomography . . . . . . .. . . . . 18 2.3.2. Quantum process tomography . . . . . . . . . . 19 Chapter 3. Quantifying Quantum Teleportation with Nonlocal Resources 22 3.1. Introduction to quantum teleportation . . . . . . . 23 3.2. Basic concept of three classical mimicries . . . . . 24 3.2.1. Characterizing teleportation process . . . . .. . 26 3.2.2. Classical teleportation model . . . .. . . . . 28 3.2.3. Genuinelyclassical teleportation model . . . . . 29 3.2.4. Classical teleportation model as a special case of genuinelyclassical teleportation model . . . . . . . . 31 3.2.5. Distinction between genuinelyclassical teleportation model and genuinelyclassical process . . . . . . . . . 34 3.3. Quantifying quantum teleportation . . .. . . . . . 35 3.3.1. Methods for quantifying teleportation . . . . . 35 3.3.2. Fidelity criterion . . . . . . . . . . . . 36 3.3.3. Quantum composition . . . . .. . . . . . . 38 3.3.4. Process robustness . . . . . . . . . . . . 39 3.4. Examples of teleportation using noisy resource .. . 40 3.4.1. Identification of teleportation using Werner state as resource . . . . 41 3.4.2. Effects of noise on one of the shared pair used in teleportation as resource . . . . . . . . . 45 3.5. Discussion and Applications . . . . . . 48 3.5.1. Simulating any dynamical process with genuinelyclassical teleportation 48 3.5.2. Identifying quantum information processingremote state preparation 49 Chapter 4. Quantum Teleportation of GenuinelyTripartite Nonlocal State 51 4.1. Resource required for tripartite quantum teleportation. . . . .. 51 4.1.1. Preparation of chaintype tripartite cluster state 52 4.1.2. Preparation of closedtype tripartite cluster state 53 4.2. Identifying genuinelymultipartite nonlocal state and genuinelyclassical multipartite state . . . . . . . . . 55 4.2.1. Definition of genuinelytripartite nonlocal state .59 4.2.2. Methods for identifying genuinelytripartite nonlocal state . . . . . 59 4.2.3. Chaintype genuinelyclassical tripartite teleportation model: first model 73 4.2.4. Chaintype genuinelyclassical tripartite teleportation model: second model . . .. . . . . .. . 82 4.2.5. Closedtype genuinelyclassical tripartite eleportation model . . . . 90 4.2.6. Identifying genuinelymultipartite nonlocal state 98 4.3. Summary and discussion . . .. . . . . . . . . . . . 99 Chapter 5. Summary and Outlook 100 5.1. Summary . . . . . . . 100 5.2. Outlook . . . . . . . 101 References 103 Appendix A. Semidefinite programming 108 Appendix B. Maximum state fidelity and bilocal correlation of ρψ3c1,out{1, 23} via programming 111 Appendix C. Maximum state fidelity and bilocal correlation of ρψ3c1,out{2, 13} via programming 116

    [1] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Tele­porting an unknown quantum state via dual classical and einstein­-podolsky­-rosen chan­nels,” Physical review letters, vol. 70, no. 13, p. 1895, 1993.
    [2] S. L. Braunstein and A. Mann, “Measurement of the bell operator and quantum telepor­tation,” Physical Review A, vol. 51, no. 3, p. R1727, 1995.
    [3] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entangle­ment,” Reviews of modern physics, vol. 81, no. 2, p. 865, 2009.
    [4] J.­G. Ren, P. Xu, H.­L. Yong, L. Zhang, S.­K. Liao, J. Yin, W.­Y. Liu, W.­Q. Cai, M. Yang, L. Li, et al., “Ground­to­-satellite quantum teleportation,” Nature, vol. 549, no. 7670, p. 70, 2017.
    [5] S.­K. Liao, W.­Q. Cai, W.­Y. Liu, L. Zhang, Y. Li, J.­G. Ren, J. Yin, Q. Shen, Y. Cao, Z.­P. Li, et al., “Satellite­to­-ground quantum key distribution,” Nature, vol. 549, no. 7670, pp. 43–47, 2017.
    [6] J. Yin, Y. Cao, Y.­H. Li, S.­K. Liao, L. Zhang, J.­G. Ren, W.­Q. Cai, W.­Y. Liu, B. Li, H. Dai, et al., “Satellite-­based entanglement distribution over 1200 kilometers,” Sci­ence, vol. 356, no. 6343, pp. 1140–1144, 2017.
    [7] N. Gisin and R. Thew, “Quantum communication,” Nature photonics, vol. 1, no. 3, p. 165, 2007.
    [8] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science, vol. 282, no. 5389, pp. 706– 709, 1998.
    [9] H.­K. Lo, M. Curty, and B. Qi, “Measurement­-device­independent quantum key distri­bution,” Physical review letters, vol. 108, no. 13, p. 130503, 2012.
    [10] J. Yin, J.­G. Ren, H. Lu, Y. Cao, H.­L. Yong, Y.­P. Wu, C. Liu, S.­K. Liao, F. Zhou, Y. Jiang, et al., “Quantum teleportation and entanglement distribution over 100­ kilometre free­-space channels,” Nature, vol. 488, no. 7410, pp. 185–188, 2012.
    [11] D. P. DiVincenzo, “Quantum computation,” Science, vol. 270, no. 5234, pp. 255–261, 1995.
    [12] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: To­wards practical large­-scale quantum computation,” Physical Review A, vol. 86, no. 3, p. 032324, 2012.
    [13] D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley, “Universal quan­tum computation with the exchange interaction,” nature, vol. 408, no. 6810, pp. 339– 342, 2000.
    [14] D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum com­putation using teleportation and single-­qubit operations,” Nature, vol. 402, no. 6760, pp. 390–393, 1999.
    [15] V. Vedral, A. Barenco, and A. Ekert, “Quantum networks for elementary arithmetic operations,” Physical Review A, vol. 54, no. 1, p. 147, 1996.
    [16] S. Massar and S. Popescu, “Optimal extraction of information from finite quantum en­sembles,” in Asymptotic Theory Of Quantum Statistical Inference: Selected Papers, pp. 356–364, World Scientific, 2005.
    [17] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, “Advances in quantum teleportation,” Nature photonics, vol. 9, no. 10, p. 641, 2015.
    [18] C.­K. Chen, “Quantifying quantum teleportation and its application,” Master’s thesis, National Cheng Kung University.
    [19] C.­K. Chen, S.­H. Chen, N.­N. Huang, and C.­M. Li, “Identifying genuine quantum teleportation,” 2020.
    [20] M. Ho, J.­D. Bancal, and V. Scarani, “Device­independent certification of the telepor­tation of a qubit,” Physical Review A, vol. 88, no. 5, p. 052318, 2013.
    [21]S.­H. Chen, H. Lu, Q.­C. Sun, Q. Zhang, Y.­A. Chen, and C.­M. Li, “Discriminat­ing quantum correlations with networking quantum teleportation,” Physical Review Research, vol. 2, no. 1, p. 013043, 2020.
    [22] N.­N. Huang, W.­H. Huang, and C.­M. Li, “Identification of networking quantum tele­portation on 14­-qubit ibm universal quantum computer,” Scientific reports, vol. 10, no. 1, pp. 1–12, 2020.
    [23] C. Monroe, R. Raussendorf, A. Ruthven, K. Brown, P. Maunz, L.­M. Duan, and J. Kim, “Large­-scale modular quantum­-computer architecture with atomic memory and pho­ tonic interconnects,” Physical Review A, vol. 89, no. 2, p. 022317, 2014.
    [24] C.­Y. Chiu, N. Lambert, T.­L. Liao, F. Nori, and C.­M. Li, “No­-cloning of quantum steering,” NPJ Quantum Information, vol. 2, no. 1, pp. 1–4, 2016.
    [25] D. Cavalcanti, P. Skrzypczyk, and I. Šupić, “All entangled states can demonstrate non­classical teleportation,” Physical Review Letters, vol. 119, no. 11, p. 110501, 2017.
    [26] M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” 2002.
    [27] H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocal­ity, and the einstein­podolsky-­rosen paradox,” Physical review letters, vol. 98, no. 14, p. 140402, 2007.
    [28] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. New York, NY, USA: Cambridge University Press, 10th ed., 2011.
    [29] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum­mechanical description of phys­ical reality be considered complete?,” Phys. Rev., vol. 47, pp. 777–780, May 1935.
    [30] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Reviews of Modern Physics, vol. 86, no. 2, p. 419, 2014.
    [31] N. Killoran, D. N. Biggerstaff, R. Kaltenbaek, K. J. Resch, and N. Lütkenhaus, “Deriva­tion and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states,” Physical Review A, vol. 81, no. 1, p. 012334, 2010.
    [32] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum­mechanical description of phys­ical reality be considered complete?,” Phys. Rev., vol. 47, pp. 777–780, May 1935.
    [33] M. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. Itano, J. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, et al., “Deterministic quantum teleportation of atomic qubits,” Nature, vol. 429, no. 6993, pp. 737–739, 2004.
    [34] S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.­M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science, vol. 323, no. 5913, pp. 486–489, 2009.
    [35] X.­S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed­-forward,” Nature, vol. 489, pp. 269 EP –, Sep 2012.
    [36] G. Brassard, “Teleportation as a quantum computation,” arXiv preprint quant­ph/9605035, 1996.
    [37] X.­S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, et al., “Quantum teleportation over 143 kilometres using active feed-­forward,” Nature, vol. 489, no. 7415, pp. 269–273, 2012.
    [38] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in matlab,” in 2004 IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508), pp. 284–289, IEEE, 2004.
    [39] K.­C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3–A Matlab software package for semidefinite­quadratic­linear programming in Matlab®, version 4.0,” Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 715–754, 2012.
    [40] J. Lee and M. Kim, “Entanglement teleportation via werner states,” Physical review letters, vol. 84, no. 18, p. 4236, 2000.
    [41] B. Dakić, Y. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Ve­ dral, A. Zeilinger, Č. Brukner, et al., “Quantum discord as resource for remote state preparation,” Nature Physics, vol. 8, no. 9, pp. 666–670, 2012.
    [42] C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Physical Review Letters, vol. 87, no. 7, p. 077902, 2001.
    [43] S. Pogorzalek, K. Fedorov, M. Xu, A. Parra­Rodriguez, M. Sanz, M. Fischer, E. Xie, K. Inomata, Y. Nakamura, E. Solano, et al., “Secure quantum remote state preparation of squeezed microwave states,” Nature communications, vol. 10, no. 1, pp. 1–6, 2019.
    [44] J. L. O’brien, “Optical quantum computing,” Science, vol. 318, no. 5856, pp. 1567– 1570, 2007.
    [45] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi, “Scaffcc: a framework for compilation and analysis of quantum comput­ing programs,” in Proceedings of the 11th ACM Conference on Computing Frontiers, pp. 1–10, 2014.
    [46] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.­i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra­-large­scale continuous-­variable cluster states multiplexed in the time domain,” Nature Photonics, vol. 7, no. 12, pp. 982–986, 2013.
    [47] L. Da­Chuang and C. Zhuo­Liang, “Teleportation of two­particle entangled state via cluster state,” Communications in Theoretical Physics, vol. 47, no. 3, p. 464, 2007.
    [48] J. Bowles, J. Francfort, M. Fillettaz, F. Hirsch, and N. Brunner, “Genuinely multipartite entangled quantum states with fully local hidden variable models and hidden multipar­tite nonlocality,” Physical review letters, vol. 116, no. 13, p. 130401, 2016.
    [49] R. Augusiak, M. Demianowicz, J. Tura, and A. Acín, “Entanglement and nonlocality are inequivalent for any number of parties,” Physical review letters, vol. 115, no. 3, p. 030404, 2015.
    [50] H. Lu, C.­Y. Huang, Z.­D. Li, X.­F. Yin, R. Zhang, T.­L. Liao, Y.­A. Chen, C.­M. Li, and J.­W. Pan, “Counting classical nodes in quantum networks,” Physical Review Letters, vol. 124, no. 18, p. 180503, 2020.
    [51] J.­W. Pan, Z.­B. Chen, C.­Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Mul­tiphoton entanglement and interferometry,” Reviews of Modern Physics, vol. 84, no. 2, p. 777, 2012.
    [52] R. Raussendorf and H. J. Briegel, “A one-­way quantum computer,” Physical Review Letters, vol. 86, no. 22, p. 5188, 2001.
    [53] K. Chen, C.­M. Li, Q. Zhang, Y.­A. Chen, A. Goebel, S. Chen, A. Mair, and J.­W. Pan, “Experimental realization of one-­way quantum computing with two­-photon four­-qubit cluster states,” Physical review letters, vol. 99, no. 12, p. 120503, 2007.
    [54] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. As­pelmeyer, and A. Zeilinger, “Experimental one­-way quantum computing,” Nature, vol. 434, no. 7030, pp. 169–176, 2005.
    [55] N.­N. Huang, J.­C. Xu, and C.­M. Li, “Device­-independent quantum computing,” un­published.
    [56] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and en­tanglement distribution among distant nodes in a quantum network,” Physical Review Letters, vol. 78, no. 16, p. 3221, 1997.
    [57] N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. Bakermans, S. J. Kamerling, N. H. Nick­ erson, S. C. Benjamin, D. J. Twitchen, M. Markham, and R. Hanson, “Entanglement distillation between solid­-state quantum network nodes,” Science, vol. 356, no. 6341, pp. 928–932, 2017.
    [58] R. Prevedel, G. Cronenberg, M. S. Tame, M. Paternostro, P. Walther, M.­S. Kim, and A. Zeilinger, “Experimental realization of dicke states of up to six qubits for multiparty quantum networking,” Physical review letters, vol. 103, no. 2, p. 020503, 2009.
    [59] J.­W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demon­stration of four­-photon entanglement and high­-fidelity teleportation,” Physical Review Letters, vol. 86, no. 20, p. 4435, 2001.
    [60] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
    [61] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM review, vol. 38, no. 1, pp. 49–95, 1996.

    下載圖示 校內:2022-01-01公開
    校外:2022-01-01公開
    QR CODE