簡易檢索 / 詳目顯示

研究生: 儲于超
Chu, Yu-Chao
論文名稱: 調控奈米相變化乳液/水組合分流量於一同心雙圓管外環/內管流道內強制對流熱傳遞特性研究
Forced convection heat transfer characteristics by controlling concurrent flow rates of a NanoPCM emulsion/water through outer annulus/inner tube of a concentric double-tube duct
指導教授: 何清政
Ho, Ching-Jenq
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 同心雙圓管奈米乳液相變化材料層流強制對流
外文關鍵詞: Concentric double tube, Nano-PCM emulsion, Phase change material, Laminar forced convection
相關次數: 點閱:95下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本文藉由實驗及數值模擬同時進行,分別以純水及機能性流體(正二十烷奈米乳液)進行增設同心圓管之等熱通量管內層流強制對流所帶來的傳熱效益。
    實驗中,以銅做為圓管材料,外管尺寸為:長度1250mm,外徑10mm、內徑9.1mm。內管尺寸為:長度2060mm,外徑8mm、內徑7.4mm。內外管間隙為1.1mm。於銅管加熱段部分纏繞緊密的鎳鉻電阻線圈提供等熱通量加熱條件。
    外部的操作條件包括奈米流體之質量分率 、入口溫度 、總體積流量 及加熱段所提供之熱通量 ,並調整內/外管流量比 同時進行數值模擬,配置出最佳的熱傳增益。
    目前,進行內外管皆以基底流體之實驗模擬比較,為證明增設同心圓管後,內管在高流速下所帶來其流體載熱可大幅提升管層流內強制對流所帶來的熱傳增益,基底流體結束後即進行奈米相變化乳液。然而可以預期的是奈米乳液於相變化階段潛熱所帶來散熱增幅,並同時研究奈米乳液之密度、比熱、及熱傳導率,以及使用相變化材料因流體黏度增加所需而外付出的壓降。
    於固定總流量及加熱功率之實驗條件,熱傳增益與流量比成正比關係,而若工作流體為奈米乳液,需在潛熱有發揮的情形下流量比越高熱傳效果才會高過於純水。在固定總流量於 中, = 2%、5%兩個濃度的奈米乳液分別在加熱功率110W流量比0.7及加熱功率110W流量比0.27,熱對流增益擁有1.32倍及1.88倍的最佳增益。
    關鍵字:同心雙圓管、奈米乳液、相變化材料、層流強制對流

    In present study demonstrates, via heat transfer experiments complementary with numerical simulations, the feasibility of achieving enhanced forced convection heat transfer of laminar water flow in an isoflux heated circular tube by inserting a concentric circular tube and controlling the concurrent flow distribution through the resulting concentric double-tube duct. In the experiment, copper was used as the material of the round tube, and the outer tube size was: length 1250 mm, outer diameter 10 mm, inner diameter 9.1 mm. The inner tube has a length of 2060 mm, an outer diameter of 8 mm, and an inner diameter of 7.4 mm. The inner and outer tube gap is 1.1mm. A tightly wound nickel-chromium resistance coil is provided in the heating section of the copper tube to provide iso-flux heating conditions. In the experimental conditions of fixed total flow and heating power, the heat transfer gain is proportional to the flow ratio. If the working fluid is a nanoemulsion, the higher the heat transfer effect will be higher than the pure water. . In the fixed total flow rate, the nanoemulsions with concentration of 2% and 5% are respectively in the heating power 110W flow ratio 0.7 and the heating power 110W flow ratio 0.27, and the convection has the best gain of 1.32 times and 1.88 times.

    Key words: Concentric double tube, Nano-PCM emulsion, Phase change material, Laminar forced convection.

    目錄 摘要 I 英文摘要 II 致謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 符號說明 XVIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目標 4 1-4 論文架構 4 第二章 物理模型與數學模式 6 2-1同心雙圓管流道共軛強制對流熱傳遞物理模型 6 2-2 同心雙圓管流道共軛強制對流熱傳遞數學模式 7 2-2-1 基本假設 7 2-2-2 統御方程式 8 2-2-3 邊界條件 10 2-2-4 相關無因次變數與參數定義 11 2-2-5 無因次統御方程式與邊界條件 13 2-3 對流熱傳遞特性相關物理量定義 17 2-4 局部/平均熱傳遞增益 24 2-5 加熱壁熱點壓抑增益 25 2-6 熱散溢性能效益值 25 第三章 實驗方法 26 3-1 實驗模型與量測設計 26 3-1-1 同心雙圓管流道實驗模型 26 3-1-2 同心雙圓管流道強制對流實驗迴路系統 27 3-1-3 同心雙圓管流道強制對流實驗量測步驟 31 3-2 相變化乳液製備與熱物理性質測定 32 3-2-1 奈米相變化流體製備方法 32 3-2-2奈米相變化流體熱物理性質測定 34  乳液固液相變化特性測定 35  密度量測 36  黏度量測 36  熱傳導係數量測 37 3-3 純水熱物理性質 43 3-4對流熱傳遞實驗量測數據處理 44 3-5 實驗量測不準度分析 51 第四章 數值方法與模擬分析 56 4-1 網格設計與數值離散方法 56 4-2 模擬解題步驟 57 4-3 網格收斂測試 58 4-4 數值模擬結果準確性驗證 59 第五章 同心雙圓管強制對流熱傳遞現象與特性 61 5-1 實驗結果 62 5-1-1內外流道流量比對雙圓管純水對流熱傳遞特性之效應 62  雙圓管流道內管散逸熱傳遞量分率 62 5-1-2奈米相變化乳液為雙管外環道工作流體之熱傳遞效益 63  雙圓管流道內管散逸熱傳遞量分率 63  雙圓管流道有效壓降與磨擦係數 64  局部/平均熱傳遞增益 64  熱壁熱點壓抑增益 65 5-2 數值模擬結果與實驗數據驗證 66 第六章 結論 106 6-1 結論 106 6-2 未來研究方向 107 參考文獻 108

    參考文獻
    [1] M.M. Ohadi, S.G. Buckley
    High temperature heat exchangers and microscale combustion systems: applications to thermal system miniaturization
    ASME-ZSITS international thermal science seminar, Bled, Slovenia, June 11 –14, 2000.
    [2] S. Pethkool, S. Eiamsa-ard, S. Kwankaomeng, P. Promvonge
    Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube
    Int. Commun. Heat Mass Transfer, 38 (3) (2011), pp. 340-347
    [3] A.E. Bergles
    The encouragement and accommodation of high heat fluxes
    Heat and Technology, 14 (2) (1996), pp. 3-11

    [4] J.A. Olivier, L. Liebenberg, M.A. Kedzierski, J.P. Meyer
    Pressure drop during refrigerant condensation inside horizontal smooth, helical microfin, and herringbone microfin tubes
    J. Heat Transfer, 126 (2004), pp. 687-696

    [5] R.L. Webb,
    Advances in modelling enhanced heat transfer surfaces
    Proceedings of 10th International Heat Transfer Conference, 1, 1994, pp. 445–459.
    [6] H. Inaba
    New challenge in advanced thermal energy transportation using functionally thermal fluids
    Int. J. Therm. Sci., 39 (2000), pp. 991-1003
    [7] B. Chen, X. Wang, Y. Zhang, H. Xu, R. Yang
    Experimental research on laminar performance of phase change emulsion
    Appl. Therm. Eng., 26 (2006), pp. 1238-1245
    [8] P. Naphon, M. Nuchjapo, J. Kurujareon
    Tube side heat transfer coefficient and friction factor characteristics of horizontal tubes with helical rib
    Energy Convers. Manage., 47 (2006), pp. 3031-3044
    [9] P.G. Vicente, A. Garcia, A. Viedma
    Experimental investigation on heat transfer and frictional characteristics of spirally corrugated tubes in turbulent flow at different Prandtl numbers
    Int. J. Heat Mass Transfer, 47 (4) (2004), pp. 671-681
    [10] F. Giampietro
    Heat transfer optimization in internally finned tubes under laminar flow conditions
    Int. J. Heat Mass Transfer, 41 (1998), pp. 1243-1253
    [11] R.M. Manglik, A.E. Bergles
    Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes. Part I: laminar flows
    Trans. ASME J. Heat Transfer, 115 (1993), pp. 881-889
    [12] W.C. Cohen, E.F. Johnson
    Dynamic characteristics of double-pipe heat exchangers
    Ind. Eng. Chem., 48 (1956), pp. 1031-1034
    [13] G. Galoppi, D. Biliotti, G. Ferrara, E. Carnevale, L. Ferrari
    Feasibility study of a geothermal power plant with a double-pipe heat exchanger
    Energy Procedia, 81 (2015), pp. 193-204
    [14] O. García-Valladares, N. Velázquez
    Numerical simulation of parabolic trough solar collector: improvement using counter flow concentric circular heat exchangers
    Int. J. Heat Mass Transf., 52 (2009), pp. 597-609
    [15] C.J. Ho, J.-Y. Yen, X.-Y. Kung, T.S. Yang, C.D. Wen
    Heat transfer characteristics in a double-pipe heat exchanger equipped with coiled circular wires
    Exp. Heat Transfer, 28 (2015), pp. 531-545
    [16] A. Zohir, M. Habib, M. Nemitallah
    Heat transfer characteristics in a double-pipe heat exchanger equipped with coiled circular wires
    Exp. Heat Transfer, 28 (2015), pp. 531-545
    [17] C.D. Ho, H.M. Yeh, W.Y. Yang
    Double-pass flow heat transfer in a circular conduit by inserting a concentric tube for improved performance
    Ind. Eng. Chem., 192 (2005), pp. 237-255
    [18] H. Masuda, A. Ebata, K. Teramae, N. Hishinuma
    Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra Fine Particles
    Netsu Bussei, 4 (1993), pp. 227-233
    [19] S. Lee, S. U.-S. Choi, S. Li, J. A. Eastman
    Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
    J. Heat Transfer 121(1999), pp.280-289
    [20] K. Shinoda, H. Arai
    The effect of phase volume on the phase inversion temperature of emulsions stabilized with nonionic surfactants
    J. Colloid Interface Sci., 25 (3) (1967), pp. 429-431
    [21] Fernandez, V. André, J. Rieger, A. Kühnle
    Nano-emulsion formation by emulsion phase inversion
    Colloids Surf. A Physicochem. Eng. Aspects, 251 (1-3) (2004), pp. 53-58
    [22] X. Xin, H. Zhang, G. Xu, Y. Tan, J. Zhang, X. Lv
    Influence of CTAB and SDS on the properties of oil-in-water nano-emulsion with paraffin and span 20/Tween 20
    Collloids Surfaces A: Physicochem. Eng. Aspects, 418 (2013), pp. 60-67
    [23] C.J. Ho, C.-Y. Lee, M. Yamada
    Experiments on laminar cooling characteristics of a phase change nanofluid flow through an iso-flux heated circular tube
    Int. J. Heat. Mass Transf., 118 (2018), pp. 1307-1315
    [24] 顏榮毅
    奈米相變化乳液/奈米流體分別流於外壁加熱同心圓環道/內管共軛強制對流熱傳遞增益特性模擬研究
    國立成功大學機械工程研究所碩士論文,pp.1-142,2016
    [25] 龔湘雲
    內置同心圓管於外壁加熱圓管及調控奈米相變化乳液/水同流量之對流熱傳遞增益研究
    國立成功大學機械工程研究所碩士論文,pp.1-166,2017
    [26] 黃俊博
    一水平圓管內PCM微粒/奈米微粒懸浮流體之熱發展強制對流熱傳特性研究
    國立成功大學機械工程研究所碩士論文,pp.1-105,2007
    [27] 張智揚
    氧化鋁-水奈米流體進口溫度於隨出口溫度變化熱物性質對圓管內層流對流熱傳遞性能之效應
    國立成功大學機械工程研究所碩士論文,pp.1-127,2011

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE