| 研究生: |
儲于超 Chu, Yu-Chao |
|---|---|
| 論文名稱: |
調控奈米相變化乳液/水組合分流量於一同心雙圓管外環/內管流道內強制對流熱傳遞特性研究 Forced convection heat transfer characteristics by controlling concurrent flow rates of a NanoPCM emulsion/water through outer annulus/inner tube of a concentric double-tube duct |
| 指導教授: |
何清政
Ho, Ching-Jenq |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 同心雙圓管 、奈米乳液 、相變化材料 、層流強制對流 |
| 外文關鍵詞: | Concentric double tube, Nano-PCM emulsion, Phase change material, Laminar forced convection |
| 相關次數: | 點閱:95 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文藉由實驗及數值模擬同時進行,分別以純水及機能性流體(正二十烷奈米乳液)進行增設同心圓管之等熱通量管內層流強制對流所帶來的傳熱效益。
實驗中,以銅做為圓管材料,外管尺寸為:長度1250mm,外徑10mm、內徑9.1mm。內管尺寸為:長度2060mm,外徑8mm、內徑7.4mm。內外管間隙為1.1mm。於銅管加熱段部分纏繞緊密的鎳鉻電阻線圈提供等熱通量加熱條件。
外部的操作條件包括奈米流體之質量分率 、入口溫度 、總體積流量 及加熱段所提供之熱通量 ,並調整內/外管流量比 同時進行數值模擬,配置出最佳的熱傳增益。
目前,進行內外管皆以基底流體之實驗模擬比較,為證明增設同心圓管後,內管在高流速下所帶來其流體載熱可大幅提升管層流內強制對流所帶來的熱傳增益,基底流體結束後即進行奈米相變化乳液。然而可以預期的是奈米乳液於相變化階段潛熱所帶來散熱增幅,並同時研究奈米乳液之密度、比熱、及熱傳導率,以及使用相變化材料因流體黏度增加所需而外付出的壓降。
於固定總流量及加熱功率之實驗條件,熱傳增益與流量比成正比關係,而若工作流體為奈米乳液,需在潛熱有發揮的情形下流量比越高熱傳效果才會高過於純水。在固定總流量於 中, = 2%、5%兩個濃度的奈米乳液分別在加熱功率110W流量比0.7及加熱功率110W流量比0.27,熱對流增益擁有1.32倍及1.88倍的最佳增益。
關鍵字:同心雙圓管、奈米乳液、相變化材料、層流強制對流
In present study demonstrates, via heat transfer experiments complementary with numerical simulations, the feasibility of achieving enhanced forced convection heat transfer of laminar water flow in an isoflux heated circular tube by inserting a concentric circular tube and controlling the concurrent flow distribution through the resulting concentric double-tube duct. In the experiment, copper was used as the material of the round tube, and the outer tube size was: length 1250 mm, outer diameter 10 mm, inner diameter 9.1 mm. The inner tube has a length of 2060 mm, an outer diameter of 8 mm, and an inner diameter of 7.4 mm. The inner and outer tube gap is 1.1mm. A tightly wound nickel-chromium resistance coil is provided in the heating section of the copper tube to provide iso-flux heating conditions. In the experimental conditions of fixed total flow and heating power, the heat transfer gain is proportional to the flow ratio. If the working fluid is a nanoemulsion, the higher the heat transfer effect will be higher than the pure water. . In the fixed total flow rate, the nanoemulsions with concentration of 2% and 5% are respectively in the heating power 110W flow ratio 0.7 and the heating power 110W flow ratio 0.27, and the convection has the best gain of 1.32 times and 1.88 times.
Key words: Concentric double tube, Nano-PCM emulsion, Phase change material, Laminar forced convection.
參考文獻
[1] M.M. Ohadi, S.G. Buckley
High temperature heat exchangers and microscale combustion systems: applications to thermal system miniaturization
ASME-ZSITS international thermal science seminar, Bled, Slovenia, June 11 –14, 2000.
[2] S. Pethkool, S. Eiamsa-ard, S. Kwankaomeng, P. Promvonge
Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube
Int. Commun. Heat Mass Transfer, 38 (3) (2011), pp. 340-347
[3] A.E. Bergles
The encouragement and accommodation of high heat fluxes
Heat and Technology, 14 (2) (1996), pp. 3-11
[4] J.A. Olivier, L. Liebenberg, M.A. Kedzierski, J.P. Meyer
Pressure drop during refrigerant condensation inside horizontal smooth, helical microfin, and herringbone microfin tubes
J. Heat Transfer, 126 (2004), pp. 687-696
[5] R.L. Webb,
Advances in modelling enhanced heat transfer surfaces
Proceedings of 10th International Heat Transfer Conference, 1, 1994, pp. 445–459.
[6] H. Inaba
New challenge in advanced thermal energy transportation using functionally thermal fluids
Int. J. Therm. Sci., 39 (2000), pp. 991-1003
[7] B. Chen, X. Wang, Y. Zhang, H. Xu, R. Yang
Experimental research on laminar performance of phase change emulsion
Appl. Therm. Eng., 26 (2006), pp. 1238-1245
[8] P. Naphon, M. Nuchjapo, J. Kurujareon
Tube side heat transfer coefficient and friction factor characteristics of horizontal tubes with helical rib
Energy Convers. Manage., 47 (2006), pp. 3031-3044
[9] P.G. Vicente, A. Garcia, A. Viedma
Experimental investigation on heat transfer and frictional characteristics of spirally corrugated tubes in turbulent flow at different Prandtl numbers
Int. J. Heat Mass Transfer, 47 (4) (2004), pp. 671-681
[10] F. Giampietro
Heat transfer optimization in internally finned tubes under laminar flow conditions
Int. J. Heat Mass Transfer, 41 (1998), pp. 1243-1253
[11] R.M. Manglik, A.E. Bergles
Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes. Part I: laminar flows
Trans. ASME J. Heat Transfer, 115 (1993), pp. 881-889
[12] W.C. Cohen, E.F. Johnson
Dynamic characteristics of double-pipe heat exchangers
Ind. Eng. Chem., 48 (1956), pp. 1031-1034
[13] G. Galoppi, D. Biliotti, G. Ferrara, E. Carnevale, L. Ferrari
Feasibility study of a geothermal power plant with a double-pipe heat exchanger
Energy Procedia, 81 (2015), pp. 193-204
[14] O. García-Valladares, N. Velázquez
Numerical simulation of parabolic trough solar collector: improvement using counter flow concentric circular heat exchangers
Int. J. Heat Mass Transf., 52 (2009), pp. 597-609
[15] C.J. Ho, J.-Y. Yen, X.-Y. Kung, T.S. Yang, C.D. Wen
Heat transfer characteristics in a double-pipe heat exchanger equipped with coiled circular wires
Exp. Heat Transfer, 28 (2015), pp. 531-545
[16] A. Zohir, M. Habib, M. Nemitallah
Heat transfer characteristics in a double-pipe heat exchanger equipped with coiled circular wires
Exp. Heat Transfer, 28 (2015), pp. 531-545
[17] C.D. Ho, H.M. Yeh, W.Y. Yang
Double-pass flow heat transfer in a circular conduit by inserting a concentric tube for improved performance
Ind. Eng. Chem., 192 (2005), pp. 237-255
[18] H. Masuda, A. Ebata, K. Teramae, N. Hishinuma
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra Fine Particles
Netsu Bussei, 4 (1993), pp. 227-233
[19] S. Lee, S. U.-S. Choi, S. Li, J. A. Eastman
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
J. Heat Transfer 121(1999), pp.280-289
[20] K. Shinoda, H. Arai
The effect of phase volume on the phase inversion temperature of emulsions stabilized with nonionic surfactants
J. Colloid Interface Sci., 25 (3) (1967), pp. 429-431
[21] Fernandez, V. André, J. Rieger, A. Kühnle
Nano-emulsion formation by emulsion phase inversion
Colloids Surf. A Physicochem. Eng. Aspects, 251 (1-3) (2004), pp. 53-58
[22] X. Xin, H. Zhang, G. Xu, Y. Tan, J. Zhang, X. Lv
Influence of CTAB and SDS on the properties of oil-in-water nano-emulsion with paraffin and span 20/Tween 20
Collloids Surfaces A: Physicochem. Eng. Aspects, 418 (2013), pp. 60-67
[23] C.J. Ho, C.-Y. Lee, M. Yamada
Experiments on laminar cooling characteristics of a phase change nanofluid flow through an iso-flux heated circular tube
Int. J. Heat. Mass Transf., 118 (2018), pp. 1307-1315
[24] 顏榮毅
奈米相變化乳液/奈米流體分別流於外壁加熱同心圓環道/內管共軛強制對流熱傳遞增益特性模擬研究
國立成功大學機械工程研究所碩士論文,pp.1-142,2016
[25] 龔湘雲
內置同心圓管於外壁加熱圓管及調控奈米相變化乳液/水同流量之對流熱傳遞增益研究
國立成功大學機械工程研究所碩士論文,pp.1-166,2017
[26] 黃俊博
一水平圓管內PCM微粒/奈米微粒懸浮流體之熱發展強制對流熱傳特性研究
國立成功大學機械工程研究所碩士論文,pp.1-105,2007
[27] 張智揚
氧化鋁-水奈米流體進口溫度於隨出口溫度變化熱物性質對圓管內層流對流熱傳遞性能之效應
國立成功大學機械工程研究所碩士論文,pp.1-127,2011