簡易檢索 / 詳目顯示

研究生: 張牧民
Chang, Mu-Ming
論文名稱: 以三靶共濺鍍成長高品質的銦鎵鋅薄膜電晶體
High Performance Thin Film Transistors with Trinal Target Co-sputtered Indium Gallium Zinc Oxide Channel
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 66
中文關鍵詞: 薄膜電晶體銦鎵鋅共濺鍍
外文關鍵詞: TFT, IGZO, co-sputtering
相關次數: 點閱:82下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用磁控式共濺鍍系統,以三個靶材共濺鍍成長銦鎵鋅氧化物做為透明薄膜電晶體之通道層薄膜,並探討膜內原子組成比例最適宜做為薄膜電晶體之通道層。在本研究中利用磁控式三靶共濺鍍系統,以不同的氧化銦、氧化鎵以及鋅靶材的成長瓦數以及調整濺鍍環境的氣體流量比例,控制膜內的銦、鎵、鋅以及氧原子的比例。一般來說,在銦鋅氧化物(IZO)的薄膜內載子的傳輸是由銦的5s 軌域互相重疊所形成的,而且銦鋅氧化物很容易產生載子。但因為太好的導電性,使銦鋅氧化物不適合作為薄膜電晶體的通道層。混入鎵離子在銦鋅氧化物內,形成銦鎵鋅氧化物可以降低由氧缺位所形成的載子。在本研究中尋找銦鎵鋅氧化物的最佳的原子組成與成長環境,並藉著能量散佈分析儀分析薄膜內的組成比例與HP 4156C 量測薄膜電晶體的電性。本研究利用不同的成長條件找出最適合的銦鎵鋅氧化物薄膜電晶體,發現在成長時通入10 mtorr 的氬氣與氧氣,流量的比例為Ar/O2=55/45,氧化銦與氧化鎵的射頻瓦數分別為50 W 與25 W,鋅的直流瓦數為10 W。由以上的條件所製作元件的場效移動率、臨界電壓、開關比以及次臨界擺幅分別為63.8 cm2 /V-s、1.9V、1.9×107 以及 0.25 V/decade。

    In this work, we reported the high performances of transparent thin-film transistors (TFTs) with indium gallium zinc oxide (IGZO) channel layer which was deposited using trinal In2O3, Ga2O3, and Zn targets in a magnetron co-sputtering system. Different respective target power and various sputtering gas flow ratios were controlled to deposit different composition of IGZO films. In general, the carrier transport path in IZO film was formed by In 5s orbital overlapping each other, and the carriers were produced easily from IZO film. Therefore, the IZO film was not suitable for the channel layer of TFTs due to its too high conductance. Incorporating Ga ions would be an important issue in IGZO films for suppressing carrier generation via oxygen vacancy formation. Therefore in this work, the optimal content and optimal deposition conditions of IGZO films was investigated by measuring the content using Energy-dispersive X-ray spectroscopy (EDS) and the performances of the resulting TFTs using HP 4156 C Semiconductor Parameter Analyzer. In our experimental results, we found the optimal deposition conditions for the IGZO channel layer. The co-sputtering was carried out at a gas flow ratio of Ar/O2=55/45, a chamber pressure of 10 mTorr, the input RF power of the In2O3 target and Ga2O3 target was, respectively, 50 W and 25W, and the input DC power of the Zn target was 10 W. The field-effect mobility(μFE), threshold voltage, on-off-ratio and subthreshold gate swing (S.S) of the IGZO TFTs were 63.8 cm2 /V-s, 1.9V, 1.9×107 and 0.25 V/decade, respectively. The mechanisms of the optimal IGZO transparent thin film transistors were investigated in this work.

    中文摘要I 英文摘要III 致謝V 目錄VI 表目錄IX 圖目錄X 第一章 序論1 1.1 透明薄膜電晶體之發展及近況1 1.2 文獻回顧3 參考文獻5 第二章 理論9 2.1 物理氣相沉積系統9 2.1-1 物理氣相沉積方式9 2.1-2 磁控式物理氣相沉積濺鍍系統9 2.1-3 濺鍍原理10 2.2 IGZO的導電機制11 2.2-1 IGZO薄膜的形成11 2.2-2 各原子在薄膜內的功用11 2.2-3 區域態(Localized state)12 2.3 薄膜電晶體之工作原理13 2.4 薄膜電晶體之元件特性14 2.4-1臨限電壓(threshold voltage, Vt)14 2.4-2場效移動率(field-effect mobility, μ)15 2.4-3元件開關比(on-to-off current ratio) 15 2.4-4次臨界擺幅(Subthreshold Swing, S)16 2.5其他參數的計算16 2.5-1界面態密度17 2.5-2能隙的計算17 參考文獻23 第三章 實驗流程26 3.1 結構26 3.2 透明薄膜電晶體之元件製作26 3.2-1 閘極製作26 3.2-2 高台製作28 3.2-3 源、汲極電極製作30 3.3 量測儀器30 參考文獻36 第四章 實驗結果與討論37 4.1 實驗流程37 4.2 不同成長環境氧含量之薄膜電晶體直流特性量測之比較37 4.3 不同成長環境銦含量之薄膜電晶體直流特性量測之比較39 4.4不同成長環境鎵含量之薄膜電晶體直流特性量測之比較39 4.5不同成長環境鋅含量之薄膜電晶體直流特性量測之比較42 4.6與市售靶材做比較所製作的薄膜電晶體特性之比較43 4.7以EDS分析薄膜之組成44 4.8 製作MOS量測介面態45 4.9最佳化薄膜的穿透率與能隙46 參考文獻64 第五章 結論65 5.1 結論65 表目錄 表4.2-1 不同氧流量特性參數整理48 表4.3-1 不同氧化銦瓦數特性參數整理48 表4.4-1 不同氧化鎵瓦數特性參數整理49 表4.5-1 不同鋅瓦數特性參數整理49 表4.6-1 共濺鍍與市售靶材比較特性參數整理50 表4.7-1 以EDS分析IGZO薄膜組成比例50 圖2.2-1 IGZO薄膜之原子鍵結形態示意圖19 圖2.2-2 IGZO的能帶模型19 圖2.2-3 IGZO薄膜的濃度對移動率圖20 圖2.2-4 明確的能帶邊界20 圖2.2-5 不明確的能帶邊界21 圖2.5-1 MOS的元件結構21 圖2.5-2 光子能量對吸收系數平方的圖22 圖3.1-1 透明薄膜電晶體結構32 圖3.2-1 光罩示意圖34 圖3.2-2 透明薄膜電晶體元件製作流程35 圖4.2-1 通道層氣體流量為Ar/O2=65/35之薄膜電晶體在不同閘極電壓下之汲源極電流-汲源極電壓關係圖51 圖4.2-2 通道層氣體流量為Ar/O2=55/45之薄膜電晶體在不同閘極電壓下之汲源極電流-汲源極電壓關係圖51 圖4.2-3 通道層氣體流量為Ar/O2=45/55之薄膜電晶體在不同閘極電壓下之汲源極電流-汲源極電壓關係圖52 圖4.2-4 通道層氣體流量為Ar/O2=65/35之薄膜電晶體在固定汲源極電壓之汲源極電流-閘源極電壓關係圖52 圖4.2-5 通道層氣體流量為Ar/O2=55/45之薄膜電晶體在固定汲源極電壓之汲源極電流-閘源極電壓關係圖53 圖4.2-6 通道層氣體流量為Ar/O2=45/55之薄膜電晶體在固定汲源極電壓之汲源極電流-閘源極電壓關係圖53 圖4.3-1 調變In2O3靶材之射頻功率為50 W之薄膜電晶體在不同閘極電壓下之汲源極電流-汲源極電壓關係圖54 圖4.3-2 調變In2O3靶材之射頻功率為25 W之薄膜電晶體在不同閘極電壓下之汲源極電流-汲源極電壓關係圖54 圖4.3-3 調變In2O3靶材之射頻功率為50 W之薄膜電晶體在固定汲源極電壓之汲源極電流-閘源極電壓關係圖55 圖4.3-4 調變In2O3靶材之射頻功率為25W之薄膜電晶體在固定汲源極電壓之汲源極電流-閘源極電壓關係圖55 圖4.4-1 調變Ga2O3靶材之射頻功率為75W之薄膜電晶體在不同閘極電壓下之汲源極電流-汲源極電壓關係圖56 圖4.4-2 調變Ga2O3靶材之射頻功率為25W之薄膜電晶體在不同閘極電壓下之汲源極電流-汲源極電壓關係圖56 圖4.4-3 調變Ga2O3靶材之射頻功率為25W之薄膜電晶體在固定汲源極電壓之汲源極電流-閘源極電壓關係圖57 圖4.5-1 調變Zn靶材之直流功率為5 W之薄膜電晶體在不同閘極電壓下之汲源極電流-汲源極電壓關係圖57 圖4.5-2 調變Zn靶材之直流功率為15 W之薄膜電晶體在不同閘極電壓下之汲源極電流-汲源極電壓關係圖58 圖4.5-3 調變Zn靶材之直流功率為5 W之薄膜電晶體在固定汲源極電壓之汲源極電流-閘源極電壓關係圖58 圖4.5-4 調變Zn靶材之直流功率為15 W之薄膜電晶體在固定汲源極電壓之汲源極電流-閘源極電壓關係圖59 圖4.6-1 通道層使用市售IGZO(2:2:1:7)靶材成長之薄膜電晶體在不同閘極電壓下之汲源極電流-汲源極電壓關係圖59 圖4.6-2 通道層使用市售IGZO(1:1:1:4)靶材成長之薄膜電晶體在不同閘極電壓下之汲源極電流-汲源極電壓關係圖60 圖4.6-3 通道層使用市售IGZO(2:2:1:7)成長之薄膜電晶體在固定汲源極電壓之汲源極電流-閘源極電壓關係圖60 圖4.6-4 通道層使用市售IGZO(1:1:1:4)成長之薄膜電晶體在固定汲源極電壓之汲源極電流-閘源極電壓關係圖61 圖4.8-1 最佳IGZO通道層條件製作MOS之電容-電壓曲線圖61 圖4.8-2 以最佳IGZO通道層條件製作MOS之氧化層漏電流-電壓曲線圖62 圖4.9-1 最佳化IGZO之穿透率對波長曲線圖62 圖4.9-2 最佳化IGZO之吸收系數平方對光子能量曲線圖63

    [1.1]M. W. J. Prins, K. G. Holz, G. Mller, J. F. M. Cillessen, and J. B. Giesbers, “A ferroelectric transparent thin-film transistor”, Appl. Phys. Lett., vol. 68, pp. 3650-3653, 1996.
    [1.2]S. Kobayashi, S. Nonomura, T. Ohmori, K. Abe, S. Hirata, T. Uno, T. Gotoh, and S. Nitta, “Optical and electrical properties of amorphous and microcrystalline GaN films and their application to transpatent TFT”, Appl. Surf. Sci., vol. 113, pp. 480-484, 1997.
    [1.3]R. L. Hoffman, B. J. Norris and J. F. Wager, “ZnO-based transparent thin-film transistors”, Appl. Phys. Lett., vol. 82, pp. 733-735, 2003.
    [1.4]S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties”, Jpn. J. Appl. Phys., vol. 93, pp. 1624-1630, 2003.
    [1.5]H. S. Bae, M. H. Yoon, J. H. Kim, and Seongil Im, “Photodetecting properties of ZnO-based thin-film transistors”, Appl. Phys. Lett., vol. 83, pp. 5313-5315, 2003.
    [1.6]H. S. Bae, J. H. Kim, and Seongil Im, “Mobility enhancement in ZnO-based TFTs by H treatment”, Electrochem. Solid-State Lett., vol. 7, pp. G279-281, 2004.
    [1.7]Q. J. Yao, D. J. Li, “Fabrication and property study of thin film transistor using rf sputtered ZnO as channel layer”, J. Non-Crystalline Solids, vol. 351, pp. 3191-3194, 2005.
    [1.8]J. Oark, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K. K. Kim S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K. W. Kwon, and Y. Park, “High-performance amorphous gallium indium zinc thin-film transistors through N2O plasma passivation“, Appl. Phys. Lett., vol. 93, pp. 053505-1-053505-3, 2008.
    [1.9]M. Ofuji, K. Abe, H. Shimizu, N. Kaji, R. Hayashi, M. Sano, H. Kumomi, K.Nomura, T. Kamiya, and H. Hosono, “Fast thin-film transistor circuits based on amorphous oxide semiconductor”, IEEE Electron Dev. Lett., vol. 28, pp. 273-275, 2007.
    [1.10]A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, J. F. Muth, “Transparent, high mobility InGaZnO thin films deposited by PLD” , Thin Solid Films, vol. 516, pp.1326-1329, 2006.
    [1.11]P. Wellenius , A. Suresh, J. V. Foreman,H. O. Everitt, J. F. Muth, “A visible transparent electroluminescent europium doped gallium oxide device”, Mater. Sci. Engin. B, vol. 146, pp. 252-255, 2008.
    [1.12]Y. Takeda, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Growth of epitaxial ZnO thin films on lattice-matched buffer layer:Application of InGaO3(ZnO)6 single-crystalline thin film”, Thin Solid Films vol. 486, pp. 28-32, 2005.
    [1.13]A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4”, Thin Solid Films, vol. 486, pp. 38-41, 2005.
    [1.14]K. Nomura, H. Ohta, A. Takagi, M. Hirano, H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, vol. 432, pp. 488-492, 2004.
    [1.15]H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumomi “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering”, Appl. Phys. Lett., vol. 89, pp. 112123-1-112123-3, 2006.
    [1.16]J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel”, Appl. Phys. Lett., vol. 91, pp. 113505-1-113505-3, 2007.
    [1.17]W. Lim, S. H. Kim, Y. L. Wang, J. W. Lee, D. P. Norton, S. J. Pearton, F. Ren, and I. I. Kravchenko, “High-Performance Indium Gallium Zinc Oxide Transparent Thin-Film Transistors Fabricated by Radio-Frequency Sputtering ”, J. Electrochem. Soc., vol. 155, pp. H383-H385, 2008.
    [1.18]A. Sato, M. Shimada, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, ”Amorphous In–Ga–Zn-O thin-film transistor with coplanar homojunction structure”, Thin Solid Films, vol. 518, pp. 1309-1313, 2009.
    [1.19]G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park, and H. J. Kim, “Formation Mechanism of Solution-Processed Nanocrystalline InGaZnO Thin Film as Active Channel Layer in Thin-Film Transistor ”, J. Electrochem. Soc., vol. 156, pp. H7-H9, 2009.
    [1.20]G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim, and H. J. Kim, “Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors”, Appl. Phys. Lett., vol. 94, pp. 233501-1-223501-3, 2009.
    [2.1] K. Tominaga, T. Murayama, I. Mori, T. Okamoto, K. Hiruta, T. Moriga, I. Nakabayashi, “Conductive transparent flms deposited by simultaneous sputtering of zinc-oxide and indium-oxide targets”, Vacuum, vol. 59, pp. 546-552, 2000.
    [2.2] M. Oritay, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, “Amorphous transparent conductiv oxide InGaO3(ZnO)m (m≦4): a Zn 4s conductor”, Philos. Mag. B, vol. 81, pp. 501-515, 2001.
    [2.3] K. Nomura, T. Kamiya, H. Ohta, K. Ueda, M. Hirano, and H. Hosono, ” Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films”, Appl. Phys. Lett., vol. 85, pp. 1993-1995, 2004.
    [2.4] D. Y. Cho, J. Song, K. D. Na, C. S. Hwang, J. H. Jeong, J. K. Jeong, and Y. G. Mo, “Local structure and conduction mechanism in amorphous In–Ga–Zn–O films”, Appl. Phys. Lett., vol. 94, pp. 112112-1-112112-3, 2009.
    [2.5]A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, J. F. Muth, “Transparent, high mobility InGaZnO thin films deposited by PLD”, Thin Solid Films, vol. 516, pp. 1326-1329, 2008.
    [2.6] H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, “Amorphous oxide channel TFTs” Thin Solid Films, vol. 516, pp. 1516-1522, 2008.
    [2.7]H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumomi “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering”, Appl. Phys. Lett., vol. 89, pp. 112123-1-112123-3, 2006.
    [2.8]R. Martins, P. Barquinha, L. Pereira, I. Ferreira, E. fortunate, “Role of order and disorder in covalent semiconductors and ionic oxides used to produce thin film transistors” Appl. Phys. A., vol 89, pp. 37-42, 2004.
    [2.9]K. Nomura, H. Ohta, A. Takagi, M. Hirano, H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, vol. 432, pp. 488-492, 2004.
    [2.10]H. Honso, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application”, J. Non-Cryst. Solids, vol. 352, pp. 851-858, 2006.
    [2.11]盧志遠, “非晶型半導體之奧秘”, 科學月刊, vol. 114, 1979.
    [2.12]戴亞翔, “TFT-LCD 面板的驅動與設計”, 五南出版社, 2008.
    [2.13]施敏, “半導體元件物理與製作技術”, 國立交通大學出版社, 2008.
    [2.14]王木俊,劉傳璽, “薄膜電晶體液晶顯示器”, 新文京開發出版股份有限公司, 2008.
    [2.15] B. Kumar, H. Gong, and R. Akkipeddi, “A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3–ZnO system”, J. Appl. Phys., vol.97, pp. 063706-1-063706-5, 2006.
    [3.1] 戴亞翔, “TFT-LCD 面板的驅動與設計”, 五南出版社, 2008.
    [4.1] J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel”, Appl. Phys. Lett., vol. 91, pp. 113505-1-113505-3, 2007.
    [4.2] G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim, and H. J. Kim, “Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors”, Appl. Phys. Lett., vol. 94, pp. 233501-1-233501-3, 2009.

    下載圖示 校內:2013-05-28公開
    校外:2013-05-28公開
    QR CODE