| 研究生: |
張牧民 Chang, Mu-Ming |
|---|---|
| 論文名稱: |
以三靶共濺鍍成長高品質的銦鎵鋅薄膜電晶體 High Performance Thin Film Transistors with Trinal Target Co-sputtered Indium Gallium Zinc Oxide Channel |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 薄膜電晶體 、銦鎵鋅 、共濺鍍 |
| 外文關鍵詞: | TFT, IGZO, co-sputtering |
| 相關次數: | 點閱:82 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用磁控式共濺鍍系統,以三個靶材共濺鍍成長銦鎵鋅氧化物做為透明薄膜電晶體之通道層薄膜,並探討膜內原子組成比例最適宜做為薄膜電晶體之通道層。在本研究中利用磁控式三靶共濺鍍系統,以不同的氧化銦、氧化鎵以及鋅靶材的成長瓦數以及調整濺鍍環境的氣體流量比例,控制膜內的銦、鎵、鋅以及氧原子的比例。一般來說,在銦鋅氧化物(IZO)的薄膜內載子的傳輸是由銦的5s 軌域互相重疊所形成的,而且銦鋅氧化物很容易產生載子。但因為太好的導電性,使銦鋅氧化物不適合作為薄膜電晶體的通道層。混入鎵離子在銦鋅氧化物內,形成銦鎵鋅氧化物可以降低由氧缺位所形成的載子。在本研究中尋找銦鎵鋅氧化物的最佳的原子組成與成長環境,並藉著能量散佈分析儀分析薄膜內的組成比例與HP 4156C 量測薄膜電晶體的電性。本研究利用不同的成長條件找出最適合的銦鎵鋅氧化物薄膜電晶體,發現在成長時通入10 mtorr 的氬氣與氧氣,流量的比例為Ar/O2=55/45,氧化銦與氧化鎵的射頻瓦數分別為50 W 與25 W,鋅的直流瓦數為10 W。由以上的條件所製作元件的場效移動率、臨界電壓、開關比以及次臨界擺幅分別為63.8 cm2 /V-s、1.9V、1.9×107 以及 0.25 V/decade。
In this work, we reported the high performances of transparent thin-film transistors (TFTs) with indium gallium zinc oxide (IGZO) channel layer which was deposited using trinal In2O3, Ga2O3, and Zn targets in a magnetron co-sputtering system. Different respective target power and various sputtering gas flow ratios were controlled to deposit different composition of IGZO films. In general, the carrier transport path in IZO film was formed by In 5s orbital overlapping each other, and the carriers were produced easily from IZO film. Therefore, the IZO film was not suitable for the channel layer of TFTs due to its too high conductance. Incorporating Ga ions would be an important issue in IGZO films for suppressing carrier generation via oxygen vacancy formation. Therefore in this work, the optimal content and optimal deposition conditions of IGZO films was investigated by measuring the content using Energy-dispersive X-ray spectroscopy (EDS) and the performances of the resulting TFTs using HP 4156 C Semiconductor Parameter Analyzer. In our experimental results, we found the optimal deposition conditions for the IGZO channel layer. The co-sputtering was carried out at a gas flow ratio of Ar/O2=55/45, a chamber pressure of 10 mTorr, the input RF power of the In2O3 target and Ga2O3 target was, respectively, 50 W and 25W, and the input DC power of the Zn target was 10 W. The field-effect mobility(μFE), threshold voltage, on-off-ratio and subthreshold gate swing (S.S) of the IGZO TFTs were 63.8 cm2 /V-s, 1.9V, 1.9×107 and 0.25 V/decade, respectively. The mechanisms of the optimal IGZO transparent thin film transistors were investigated in this work.
[1.1]M. W. J. Prins, K. G. Holz, G. Mller, J. F. M. Cillessen, and J. B. Giesbers, “A ferroelectric transparent thin-film transistor”, Appl. Phys. Lett., vol. 68, pp. 3650-3653, 1996.
[1.2]S. Kobayashi, S. Nonomura, T. Ohmori, K. Abe, S. Hirata, T. Uno, T. Gotoh, and S. Nitta, “Optical and electrical properties of amorphous and microcrystalline GaN films and their application to transpatent TFT”, Appl. Surf. Sci., vol. 113, pp. 480-484, 1997.
[1.3]R. L. Hoffman, B. J. Norris and J. F. Wager, “ZnO-based transparent thin-film transistors”, Appl. Phys. Lett., vol. 82, pp. 733-735, 2003.
[1.4]S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties”, Jpn. J. Appl. Phys., vol. 93, pp. 1624-1630, 2003.
[1.5]H. S. Bae, M. H. Yoon, J. H. Kim, and Seongil Im, “Photodetecting properties of ZnO-based thin-film transistors”, Appl. Phys. Lett., vol. 83, pp. 5313-5315, 2003.
[1.6]H. S. Bae, J. H. Kim, and Seongil Im, “Mobility enhancement in ZnO-based TFTs by H treatment”, Electrochem. Solid-State Lett., vol. 7, pp. G279-281, 2004.
[1.7]Q. J. Yao, D. J. Li, “Fabrication and property study of thin film transistor using rf sputtered ZnO as channel layer”, J. Non-Crystalline Solids, vol. 351, pp. 3191-3194, 2005.
[1.8]J. Oark, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K. K. Kim S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K. W. Kwon, and Y. Park, “High-performance amorphous gallium indium zinc thin-film transistors through N2O plasma passivation“, Appl. Phys. Lett., vol. 93, pp. 053505-1-053505-3, 2008.
[1.9]M. Ofuji, K. Abe, H. Shimizu, N. Kaji, R. Hayashi, M. Sano, H. Kumomi, K.Nomura, T. Kamiya, and H. Hosono, “Fast thin-film transistor circuits based on amorphous oxide semiconductor”, IEEE Electron Dev. Lett., vol. 28, pp. 273-275, 2007.
[1.10]A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, J. F. Muth, “Transparent, high mobility InGaZnO thin films deposited by PLD” , Thin Solid Films, vol. 516, pp.1326-1329, 2006.
[1.11]P. Wellenius , A. Suresh, J. V. Foreman,H. O. Everitt, J. F. Muth, “A visible transparent electroluminescent europium doped gallium oxide device”, Mater. Sci. Engin. B, vol. 146, pp. 252-255, 2008.
[1.12]Y. Takeda, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Growth of epitaxial ZnO thin films on lattice-matched buffer layer:Application of InGaO3(ZnO)6 single-crystalline thin film”, Thin Solid Films vol. 486, pp. 28-32, 2005.
[1.13]A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4”, Thin Solid Films, vol. 486, pp. 38-41, 2005.
[1.14]K. Nomura, H. Ohta, A. Takagi, M. Hirano, H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, vol. 432, pp. 488-492, 2004.
[1.15]H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumomi “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering”, Appl. Phys. Lett., vol. 89, pp. 112123-1-112123-3, 2006.
[1.16]J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel”, Appl. Phys. Lett., vol. 91, pp. 113505-1-113505-3, 2007.
[1.17]W. Lim, S. H. Kim, Y. L. Wang, J. W. Lee, D. P. Norton, S. J. Pearton, F. Ren, and I. I. Kravchenko, “High-Performance Indium Gallium Zinc Oxide Transparent Thin-Film Transistors Fabricated by Radio-Frequency Sputtering ”, J. Electrochem. Soc., vol. 155, pp. H383-H385, 2008.
[1.18]A. Sato, M. Shimada, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, ”Amorphous In–Ga–Zn-O thin-film transistor with coplanar homojunction structure”, Thin Solid Films, vol. 518, pp. 1309-1313, 2009.
[1.19]G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park, and H. J. Kim, “Formation Mechanism of Solution-Processed Nanocrystalline InGaZnO Thin Film as Active Channel Layer in Thin-Film Transistor ”, J. Electrochem. Soc., vol. 156, pp. H7-H9, 2009.
[1.20]G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim, and H. J. Kim, “Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors”, Appl. Phys. Lett., vol. 94, pp. 233501-1-223501-3, 2009.
[2.1] K. Tominaga, T. Murayama, I. Mori, T. Okamoto, K. Hiruta, T. Moriga, I. Nakabayashi, “Conductive transparent flms deposited by simultaneous sputtering of zinc-oxide and indium-oxide targets”, Vacuum, vol. 59, pp. 546-552, 2000.
[2.2] M. Oritay, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, “Amorphous transparent conductiv oxide InGaO3(ZnO)m (m≦4): a Zn 4s conductor”, Philos. Mag. B, vol. 81, pp. 501-515, 2001.
[2.3] K. Nomura, T. Kamiya, H. Ohta, K. Ueda, M. Hirano, and H. Hosono, ” Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films”, Appl. Phys. Lett., vol. 85, pp. 1993-1995, 2004.
[2.4] D. Y. Cho, J. Song, K. D. Na, C. S. Hwang, J. H. Jeong, J. K. Jeong, and Y. G. Mo, “Local structure and conduction mechanism in amorphous In–Ga–Zn–O films”, Appl. Phys. Lett., vol. 94, pp. 112112-1-112112-3, 2009.
[2.5]A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, J. F. Muth, “Transparent, high mobility InGaZnO thin films deposited by PLD”, Thin Solid Films, vol. 516, pp. 1326-1329, 2008.
[2.6] H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, “Amorphous oxide channel TFTs” Thin Solid Films, vol. 516, pp. 1516-1522, 2008.
[2.7]H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumomi “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering”, Appl. Phys. Lett., vol. 89, pp. 112123-1-112123-3, 2006.
[2.8]R. Martins, P. Barquinha, L. Pereira, I. Ferreira, E. fortunate, “Role of order and disorder in covalent semiconductors and ionic oxides used to produce thin film transistors” Appl. Phys. A., vol 89, pp. 37-42, 2004.
[2.9]K. Nomura, H. Ohta, A. Takagi, M. Hirano, H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, vol. 432, pp. 488-492, 2004.
[2.10]H. Honso, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application”, J. Non-Cryst. Solids, vol. 352, pp. 851-858, 2006.
[2.11]盧志遠, “非晶型半導體之奧秘”, 科學月刊, vol. 114, 1979.
[2.12]戴亞翔, “TFT-LCD 面板的驅動與設計”, 五南出版社, 2008.
[2.13]施敏, “半導體元件物理與製作技術”, 國立交通大學出版社, 2008.
[2.14]王木俊,劉傳璽, “薄膜電晶體液晶顯示器”, 新文京開發出版股份有限公司, 2008.
[2.15] B. Kumar, H. Gong, and R. Akkipeddi, “A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3–ZnO system”, J. Appl. Phys., vol.97, pp. 063706-1-063706-5, 2006.
[3.1] 戴亞翔, “TFT-LCD 面板的驅動與設計”, 五南出版社, 2008.
[4.1] J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel”, Appl. Phys. Lett., vol. 91, pp. 113505-1-113505-3, 2007.
[4.2] G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim, and H. J. Kim, “Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors”, Appl. Phys. Lett., vol. 94, pp. 233501-1-233501-3, 2009.