| 研究生: |
邱靜芳 Chiu, Jing-Fang |
|---|---|
| 論文名稱: |
肱盂關節進行牽拉關節鬆動術之生物力學分析 Biomechanical Analysis of Distraction Mobilization of the Glenohumeral Joint |
| 指導教授: |
徐阿田
Hsu, Ar-Tyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 物理治療學系 Department of Physical Therapy |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 牽拉關節鬆動術 、關節轉動中心 、肩關節 、活動度 |
| 外文關鍵詞: | Distraction mobilization technique, Joint center, Shoulder, Mobility |
| 相關次數: | 點閱:77 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
實驗背景及目的 關節牽拉鬆動技巧在臨床上常被使用於治療盂肱關節活動度下降的病人.其手法是由治療師沿著所包含受試者的身體肢段施予一長軸方向的牽拉力量.雖然關節牽拉鬆動技巧的手法在臨床骨科物理治療上已常被使用,卻仍缺乏運動學描述以及科學證據來支持它的效果。因此本篇研究的目的即在於分析屍體盂肱關節樣本在不同關節位置(置中位置,休息位置,終端位置)下,進行關節牽拉鬆動技巧時肱骨頭中心的移動情形。實驗方法 在關節牽拉鬆動技巧程序方面,12位有三年以上骨科物理治療臨床經驗的物理治療師參與本實驗.他們在三種不同關節位置下對於盂肱關節樣本施行關節牽拉鬆動技巧的手法,本實驗量測施行牽拉動作時關節中心的移動情形(前/後, 上/下, 內/外)。同時也會測量施行牽拉動作時的力量以及關節角度.運動學的資料由VICON 370動作分析系統來擷取,力量則由AMTI六軸測力儀來量測.在關節牽拉鬆動技巧程序前後,我們用MTS系統來量測屍體樣本之活動度,包括向後滑動量、向前滑動量、向下滑動量、轉動角度及外展角度,藉由MTS的實驗可知道屍體樣本的活動度,在關節牽拉鬆動技巧前後是否有改變。至於計算關節轉動中心的方法,則依照Gamage及Lasenby所發展的最小平方法。資料分析方面,我們比較屍體盂肱關節樣本在不同關節位置下,進行關節牽拉鬆動技巧時肱骨頭的移動情形(前/後, 上/下, 內/外)。本研究使用Friedman 以及 Wilcoxon signed ranks test來檢定,顯著差異定在0.05,我們使用SPSS 11.0來做統計分析。結果 在進行第五回關節牽拉鬆動手法時,盂肱關節中心的總移動量在休息位置時最大(27.38 mm), 第二是置中位置(22.01 mm), 而在終端位置則是最小的(9.34 mm). 盂肱關節中心的總移動量在三種不同關節位置時具有統計學的顯著差異(Wilcoxon signed rank test, p < 0.002).另外動力學的資料方面,關節牽拉的力量在三種不同關節位置時也具有統計學的顯著差異(Wilcoxon signed rank test, p < 0.015).至於在MTS的資料分析, 則發現實驗前後樣本的活動度在向下滑動,外展角度,總旋轉角度三方面有增加情形。結論 由12位有經驗的治療師進行此實驗可幫助了解盂肱關節樣本在不同關節位置下,進行關節牽拉鬆動技巧時其動力學和運動學的特徵以及中間相關的機制,結果發現在進行關節牽拉鬆動手法時,肱骨頭中心的總移動量在休息位置時最大(27.38 mm), 第二是置中位置(22.01 mm), 而在終端位置則是最小的(9.34 mm),此實驗結果提供在臨床上如何選擇適當的關節位置以實行牽拉鬆動術的學理依據.
Background and Purpose. The distraction mobilization technique is commonly used for patients with glenohumeral joint hypomobility. Distraction procedures require the physical therapist to exert a long axis distraction force along the shaft of the involved segment of the treated subject. Even though distraction mobilization technique has been used in the clinic, there is a lack of kinematic description and the scientific evidence of its efficacy. The purpose of this study is to analyze the humeral head displacement while performing the distraction mobilization technique in three different joint positions (neutral position, resting position, and end range position) of the glenohumeral abduction. Methods. Twelve experienced orthopedic physical therapists were recruited for this study. They performed the distraction mobilization technique in three different joint positions on the glenohumeral joint of a fresh cadaveric specimen. Outcome measures were the displacements of glenohumeral joint center (anterior-posterior, superior-inferior, medial-lateral directions) during distraction mobilization. The applied distraction forces and joint angles of the glenohumeral joint were also monitored. Kinematic data was collected by VICON motion analysis system; distraction forces were measured by an AMTI 6-axis load cell. We used the least squares method developed by Gamage and Lasenby (2002) to calculate the joint center. We compared the parameter of the peak total displacements of the glenohumeral joint center in anterior-posterior, medial-lateral, and superior-inferior directions during distraction mobilization technique in three different joint positions. Before and after the distraction procedures, a biaxial material testing system equipped with an x-y table was used to measure the magnitudes of anterior-posterior gliding, posterior-anterior gliding, inferior gliding, rotation angles and abduction angles of the specimen. The purpose of the MTS procedures was to measure whether there were changes in the mobility of the shoulder specimen before and after the experimental sessions. These outcome measures were tested by Friedman and Wilcoxon signed rank test with an α level of 0.05. SPSS 11.0 was used for all statistical analyses. Results. The peak total displacement of the humeral head during the fifth distraction mobilization procedure was largest in resting position (27.38 mm) followed by neutral position (22.01 mm) and end range position (9.34 mm). There were significant differences in three different joint positions (Wilcoxon signed rank test, p < 0.002). The distraction forces used were significantly different among the three glenohumeral joint positions (Wilcoxon signed rank test, p < 0.015). The mobility data measured in MTS procedures showed an increase in inferior gliding, abduction angle, and total rotation angle. Conclusion. Data collected from the twelve experienced physical therapists helped us to understand the kinematic and kinetic characteristics of the glenohumeral joint and the relationship mechanism of the distraction mobilization technique in three different joint positions. During distraction mobilization, the peak total displacement of the humeral head was largest in resting position follow by neutral position and end range position. This result may provide the rationales for choosing distraction mobilization technique at appropriate joint position.
1. Kaltenborn F. Manual mobilization of the extremity joints. Oslo:Olaf Norlis Bokhandel; 1989.
2. Threlkeld AJ. The effects of manual therapy on connective tissue. Phys Ther 1992;72:893-902
3. Conroy DE, Hayes KW: The Effect of Joint Mobilization as a Component of Comprehensive Treatment for Primary Shoulder Impingement Syndrome. JOSPT 28:3-13,1998.
4. Magee DJ. Orthopedic Physical Assessment (3rd ed).Philadelphia: Saunders WB; 1997:175:240.
5. Culham E, Peat M. Functional anatomy of the shoulder complex. J Orthop Sports Phys Ther. 1999;18(1):342-350.
6. Warner JP, Deng X, Warren R, et al. Static capsuloligamentous restrains to superior-inferior translation of the glenohumeral joint. Am J Sports Med. 1992; 20(6):675-685.
7. Warner JP. The Gross anatomy of the joint surfaces, ligaments, labrum, and capsule. In Matsen FA, Fu FH, Hawkins RJ, editors. The shoulder: a balance of mobility and function Rosemont. Il, AAOS; 1993:7-27.
8. O’Brien SJ, Neves MC, Arnoczky SP, et al. The anatomy and histology of the inferior glenohumeral ligament complex of the shoulder. Am J Sports Med. 1990; 18(5):579:584.
9. Gamage HU, Lasenby J. New least squares solutions for estimating the average centre of rotation and the axis of rotation. J Biomech. 2002;35:87-93.
10. Harryman DT, Sidles JA, Harris SL, et al. The role of the rotator interval capsule in passive motion and stability of the shoulder. J Bone Joint Surg. 1992; 74-A:53-66.
11. Brenneke SL, Reid J, Ching RP, et al. Glenohumeral kinematics and capsule-ligamentous strain resultind from laxity exams. Clin Biomech. 2000;15:735-742.
12. Debski RE, Wong EK. Woo S, et al. In situ force distribution in the glenohumeral joint capsule during anterior-posterior loading. J Bone Joint Surg. 1999;17:769-775.
13. Blasier RB, Soslowsky LJ, Malicky DM, et al. Posterior glenohumeral subluxation: active and passive stabilization in a biomechanical model. J Bone Joint Surg. 1997; 79-A:433-440.
14. Hsu AT, Ho L, Ho S, et al. Joint position during anterior-posterior glide mobilization: its effect on glenohumeral abduction range of motion. Arch Phys Med Rehabil. 2000;81:210-214.
15. Hsu AT, Hedman T, Chang JH, et al. Changes in abduction and rotation range of motion in response to simulated dorsal and ventral translational mobilization of the glenohumeral joint. Phys Ther. 2002;82(6):544-555.
16. Terry GC, Hmmon D, France P, et al. The stabilizing function of passive shoulder restrains. Am J Sports Med. 1991; 19(1):26-34.
17. Harryman D, Sidles JA, Clark JM, McQuade KJ, Gibb TD, Matsen FA. Translation of the humeral head on the glenoid with passive glenohumeral motion. J Bone Joint Surg. 1990;72A:1334:1343.
18. Snell RS. The upper limb. In Snell RS, editor. Clinical anatomy. Boston: Little, Brown and comspny;1995:381-506.
19. Bigliani LU, Kelkar R, Flatow EL, et al. Glenohumeral stability. Clin Orthop.1996;330:13-30.
20. Wilk K, Arrigo C, Andrews J. Current concepts: the stabilizing Structures of the glenohumeral joint. J Orthop Sports Phys Ther. 1997; 25(6):364-379.
21. Malicky DM, Soslowsky LJ, Blasier RB, et al. Anterior glenohumeral stabilization factors: progressive effects in a biomechanical model. J Orthop Res. 1996;14:282-288.
22. Graichen H, Stammberger T, Bonel H, Englmeier K, Reiser M, Eckstein F. Glenohumeral translation during active and passive elevation of the shoulder-a 3D open-MRI study. J Biomech. 2000;33:609-613.
23. Ludewig PM, Cook TM. Translation of the humerus in persons with shoulder impingement syndromes. J Orthop Sports Phys Ther.2002;32(6):248:259.
24. Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80(3):276-291.
25. Paletta GA,Warner JJ, Warren RF, Deutsch A, Altchek DW. Shoulder kinematics with two-plane X-ray evaluation in patients with anterior instability or rotator cuff tearing. J Shoulder Elbow Surg.1997;6:516:527.
26. Halvorsen K, Lasser M, Lundberg A. A new method for estimating the axis of rotation and the center of rotation. J Biomech.1999;32:1221-1227.
27. Silaghi M, Plaenkers R, Boulic R, Fua P, Thalmann D. Local and global skeleton fitting techniques for optical motion capture. In: Magnenat-Thalmann, N, Thalmann D (Eds), Modeling and motion capture techniques for virtual environments, lecture notes in artificial intelligence, No.1537. Berlin, Springer;1998:pp.26-40.
28. Meskers GM, Rozing PM, Rozendaal LA. In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. J Biomech. 1998;31:93-96.
29. Veeger HE. The position of the rotation center of the glenohumeral joint. J Biomech. 2000;33:1711-1715.
30. Stokdijk M, Nagels J. The glenohumeral joint centre in vivo. J Biomech. 2000;33:1629-1636.
31. Simmonds MJ, Kumar S, Lechelt E. Use of a spinal model to quantify the forces and motion that occur during therapists’ tests of spinal motion. Phys Ther 1995:75:212-22.
32. Hsu AT, Ho L, Ho S, Hedman T. Immediate response of glenohumeral abduction range of motion to a caudally directed translational mobilization: a fresh cadaver simulation. Arch Phys Med Rehabil 2000;81:1511-6.
33. Lee TQ, Dettling J, Sandusky MD, McMahon PJ. Age related biomechanical properties of the glenoid-anterior band of the inferior glenohumeral ligament-humerus complex. Clin Biomech (Bristol, Avon) 1999;14:471-6.
34. Debski RE, Sakone M, Woo SL, Wong EK, Fu FH, Warner JJ. Contribution of the passive properties of the rotator cuff to glenohumeral stability during anterior-posterior loading. J Shoulder Elbow Surg 1999;8:324-9.
35. O’Brien SJ, Schwartz RS, Warren RF, Torzilli PA. Capsular restraints to anterior-posterior motion of the abducted shoulder: a biomechanical study. J Shoulder Elbow Surg 1995;4:298-308.
36. Yahia LH, Pigeon P, DesRosiers EA. Viscoelastic properties of the human lumbodorsal fascia. J Biomed Eng 1993;15:425-9.
37. Itoi E, Motzkin NE, Morey BF, An KN. Contribution of axial rotation to the humeral head translation. Am J Sports Med. 1994;22:499-503.
38. Pagnani MJ, Deng XH, Warren RF, et al. Effect of lesion of the superior portion of the glenoid labrum on glenohumeral translation. J Bone Joint Surg Am. 1995;77:1003-1010.
39. Mark T, Reis MD, Tibone MD, Thay Q, et al. Cadaveric study of glenohumeral translation using electromagnetic sensors. Clinic Ortho & related research. 2002;400:88-92.
40. Speer KP, Deng XH, Borrero S, et al. Biomechanical evaluation of a simulated Bankart lesion. J Bone Joint Surg Am. 1994;76:1819-1826.
41. Black KP, Schneider DJ, Yu JR, Jacobs CR. Biomechanics of the Bankart repair: the relationship between glenohumeral translation and labral fixation site. Am J Sports Med. 1999;27:339-344.
42. Riddle D, Measurement of accessory motion: critical issues and related concepts. Phys Ther. 1992;72:865-874.
43. McClure PW, Flowers KR. Treatment of limited shoulder motion: a case study based on biomechanical considerations. Phys Ther 1992;72:929-36.
44. Woo SLY, An KN, Arnoczky SP, Wayne JS, Fithian DC, Myer BS. Anatomy, biology, and biomechanics of tendon, ligament, and meniscus. In:Simon SR, editor. Orthopedic basic sciences. Rosemont, IL: American Academy of Orthopedic Surgeons;1994.
45. Bowen MK, Warren RF. Ligamentous control of shoulder stability based on selective cutting and static translation experiments. Clinic Sports Med 1991;10:757-82.
46. Nigg BM, Herzog W. Biomechanics of the mucsule skeletal system. New York: Wiley;1994.
47. Hayashi K, Thabit G III, Massa KL, Bogdanske JJ, Cooley AJ, Orwin JF, et al. The effect of thermal heating on the length and histologic properties of the glenohumeral joint capsule. Am J Sports Med 1997;25:107-12.
48. Hsu AT, Ho L, Ho S, Hedman T. Characterization of tissue resistance during a dorsally directed translational mobilization of the glenohumeral joint. Arch Phys Med Rehabil 2002;83:360-6.
49. Hertling D, Kessler RM. Management of common musculoskeletal disorders: physical therapy principles and methods. 3rd ed. New York: Lippincott; 1996.
50. Maitland GD. Peripheral manipulation. 3rd ed. Boston: Butter-worths-Heinemann;1991.
51. Edmond SL. Manipulation and mobilization: extremities and spinal techniques. St Louis: Mosby;1993.
52. Farrell JP, Jensen GM. Manual therapy: a critical assessment of role in the profession of physical therapy. Phys Ther 1992;72:843-52.
53. Donatelli R. Orthopedic physical therapy. New York: Churchill Livingston; 1989.
54. SPSS for Windows [computer program]. Version 6.0. Chicago: SPSS; 1993.
55. Neer C. Involuntary inferior and multidirectional instability of the shoulder: etiology, recognition and treatment. In Neer C, editor. Shoulder reconstruction. Philadelphia: WB Saunders; 1990:232-238.
56. Lee SB, Kim KJ, O’Driscoll SW, et al. Dynamic glenohumeral stability provided by the rotator cuff muscles in the mid-range and end-range of motion. J Bone Joint Surg.2000; 82-A:849-857.
57. Itoi E, Newman SR, Kuechle DK, et al. Dynamic stabilizers of the shoulder with the arm in abduction. J Bone Joint Surg. 1994; 76-B:834-836.
58. Halder AM, Zhao KD, O’Driscoll SW, et al. Dynamic contributions to superior shoulder stability. J Orthop Res. 2001; 19:206-212.
59. Vander Windt, DA, Kose BW, de Jong BA, Bouter LM. Shoulder disorders in general practice: incidence, patient characteristics, and management. Ann Rheum Dis. 1995;54:959-964.
60. Deutsch A, Altchek DW, Shwartz E, Otis JC, Warren RF. Radiologic measurement of superior displacement of the humeral head in the impingement syndrome. J Shoulder Elbow Surg. 1996:5:186-193.
61. Chen SK, Simonian PT, Wickiewicz TL, Otis JC, Warren RF. Radiographic evaluation of glenohumeral kinematics: a muscle fatique model. J Shoulder Elbow Surg. 1999;8:49-52.