簡易檢索 / 詳目顯示

研究生: 李仲弘
Li, Chung-hung
論文名稱: 中國重慶芙蓉洞霰石石筍的δ18O和δ13C涵義:6000年季風氣候紀錄
Interpretations of δ18O and δ13C in aragonite stalagmites from Furong Cave, Chongqing, China: A 6000-year record of monsoonal climate
指導教授: 李紅春
Li, Hong-chun
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 76
中文關鍵詞: 中國重慶芙蓉洞碳同位素氧同位素霰石石筍古氣候
外文關鍵詞: paleoclimate, China, Chongqing, aragonite stalagmite, Furong Cave, stable isotope
相關次數: 點閱:141下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 採集自中國重慶芙蓉洞兩塊霰石石筍,透過210Pb和鈾系質譜定年,顯示它們的生長時間在過去6
    千年內。兩塊石筍的δ13C值的變化範圍分別為0.5‰ ~ -5‰和0.5‰
    ~ -2‰;δ18O值的變化範圍分別為-
    6.2‰ ~ -7.2‰和-7.2‰ ~ -9‰(PDB)。經過XRD的分析,這兩塊石筍是很純的霰石,沒有方解石成份
    存在,而造成霰石形成的主要原因是:(1)由於芙蓉洞基岩為白雲石質石灰岩,使洞穴滲流水含有
    較多的Mg2+而不利方解石形成;(2)夏季地表溫度高,白雲石/方解石的溶解比例增加;(3)生物
    活動強,有利於地表下滲水中的鍶和鎂含量增加(有機質來源);(4)洞穴頂上的包氣帶較厚,下
    滲水在圍岩中運移的時間長,導致碳酸鹽在水中的飽和度高;(5)石筍與洞穴頂部距離長,CO2從水
    中脫氣較多;(6)碳酸鈣沉積(或石筍生長)緩慢。雖然上述(1)-(4)項都會使得下滲水的δ
    13C偏重,然而,所測量的洞穴滴水的δ13C普遍在-7 ~ -11‰,並未指示滴水的δ13C偏重。這顯示地
    表的條件主要是有利於Mg2+和Sr2+在下滲溶液中的濃度增加,而使得洞穴石筍在碳酸鈣沉澱時有利於
    霰石形成。由於滴水本身沒有偏重的情況,所以我們推測發生δ13C偏重的過程,是在洞穴滴水進入
    洞穴後才發生的。此外,在相同沉積條件下霰石的δ13C會比方解石偏重,上述的第(5)和(6)項
    以及霰石的形成,也都會造成碳酸鈣在沉澱過程中,與母液的碳同位素分餾時變重,因此使得這兩塊
    石筍的δ13C(大於-5‰)比起一般石筍的δ13C偏重許多。在這種情況下,霰石石筍δ13C記錄可能難以
    反映地表植被的變化。
      對於δ18O值來說,FR0510-1頂端δ18O為-6.28‰,為現今沉積的碳酸鈣。利用洞穴滴水δ18O = -
    6.76‰(SMOW)及洞穴均溫16℃,計算霰石石筍δ18O在平衡分餾狀態下為-5.92‰(PDB),與我們所
    測石筍δ18O值相當接近,因此我們相信兩塊石筍樣品δ18O為平衡分餾。
      將兩塊石筍δ18O與貴州董歌洞和湖北和尚洞石筍δ18O進行對比,發現在長時間尺度上變化一
    致,短時間尺度上可能受到區域降雨影響而有差異。這兩個石筍所顯示的6000年來的δ18O記錄從老
    到新持續變重到大約1000年前。這個長時間尺度的變化趨勢,指示夏季風的強度隨著太陽輻射的減弱
    逐漸變弱,氣候變得乾冷。
      在FR0510-1過去2000年的記錄中,δ18O值在1700a到850a(years ago)較重,指示包括中世紀
    暖期時期在內的氣候相對乾旱;而δ18O值在800a到100a之間較輕,指示小冰期尤其是後半段時間氣
    候較濕潤。芙蓉洞2000年來的石筍紀錄與和尚洞、董歌洞的紀錄基本相同,但前兩個紀錄與董歌洞的
    紀錄在過去200年顯示相反的變化趨勢。這種明顯不同的變化可能顯示在短時間尺度上,各地季風降
    雨在空間上的不一致性。

    Two aragonite stalagmites FR0510-1 and FR0510-2 Furong Cave, Chongqing, were dated by 210Pb and 230Th/U ICPMS methods, compiling a-6000-year record of climate history under the influence of the East Asian Summer Monsoon. The δ13C of FR0510-1 ranges 0.5 ~ -5, and the δ13C of FR0510-2 ranges 0.5 ~ -2; whereas the δ18O of FR0510-1 varies from -6.2 to -7.2 (PDB) and the δ18O of FR0510-2 varies from -7.2 to -9 (PDB). By using XRD analyses, we know that these two stalagmites are aragonite formation and no calcite exist. Below are the reasons of aragonite formation:
    1. Due to the bedrock of Furong Cave is dolomitic limestone, the seepage water dissolved relatively more Mg2+ which is the calcite inhibitor.
    2. High surface temperature during the summer is in favor of the dissolution of dolomite than calcite.
    3. High microorganism activity leads to more Sr2+ and Mg2+ contents in the seepage water from organic matters.
    4. Highly supersaturated carbonate in the seepage water might be caused by the thick vadose zone and longer traveling time above the cave.
    5. More CO2 degasses from drip water due to longer dripping distance from the cave ceiling to the surface of the stalagmites as they grew in a big hall in the cave.
    6. Calcium carbonate precipitated slowly in the surface of stalagmites.
    The reasons 1-4 above could make the δ13C of total CO2 dissolved in the seepage water becoming heavier before the CaCO3 precipitation during the stalagmite formation. However, the measured δ13C of modern dripping water ranges about -7 to -11 which do not show anomaly heavy values. Therefore, we consider that δ13C becomes heavier after the seepage water entered the cave and during the stalagmite precipitated from drip water. The factors 1-4 are the reasons of aragonite formation. Under the same conditions, carbon isotopic fractionation during CaCO3 precipitation will lead to heavier δ13C value in aragonite than that in calcite. In summary, the factors (5) and (6) as well as aragonite formation cause the δ13C of both stalagmites much heavier than δ13C of common stalagmites.
    The δ18O of FR0510-1 stalagmite surface which formed in modern day is -6.28. Using the δ18O (-6.76, SMOW) of the drip water and cave temperature of 16oC, we calculate the δ18O of calcite precipitated in equilibrium fractionation, being -5.92 (PDB). This value is similar to the value of FR0510-1 surface. Therefore, we believe that the stalagmite was precipitated in oxygen isotopic equilibrium.
    The compiled δ18O record of the two stalagmites compares with the Dongge Cave and Heshang Cave δ18O records, showing similar trends in long-term scale but many discrepancies in short-term scale. The increasing trend of the δ18O from 6000a(years ago) to 1000a indicates the reduced summer monsoon strength caused by decreased solar insolation from middle to late Holocene. This long-term trend illustrates that the local and regional climates became dry and cool from middle to late Holocene due to the summer monsoon weakening.
    The past 2000 years record of FR0510-1 shows that the δ18O is relatively heavy from 1700a to 850a, indicating the climate was relatively dry even during Medieval Warm Period; whereas the δ18O was relatively light from 800a to 100a, reflecting relatively wet climate during the little ice age especially the late half. The past 2000 year record shows a similar trend with Heshang Cave and Dongge Cave records, Furong Cave and Heshang Cave have an opposite trend to the Dongge Cave record during the past 200 years. The opposite trends during the past 200 years may reflect spatial variations of monsoonal rain.

    摘要 I ABSTRACT III 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XII 第一章 前言 1  1.1 前言 1  1.2 研究動機與目的 3  1.3 前人研究 4   1.3.1分配係數與同位素分餾係 4   1.3.2 碳同位素在霰石和方解石沉澱時的分餾效應 4   1.3.3 氧同位素在霰石和方解石沉澱時的分餾效應 5   1.3.4 霰石石筍碳氧穩定同位素的相關研究 6   1.3.5 重慶芙蓉洞洞穴沉積物δ13C、δ18O特徵及意義 7 第二章 原理 9  2.1 洞穴碳酸鹽主要礦物相 9  2.2 洞穴碳酸鹽 9   2.2.1 溶洞成因 10   2.2.2 洞穴碳酸鹽成因 11   2.2.3 適用於古氣候分析的洞穴碳酸鹽 12   2.2.4 石筍在古氣候研究上的優勢 12  2.3 同位素分餾 13   2.3.1 石筍氧同位素 14   2.3.2 石筍碳同位素 17 第三章 研究區域與樣品介紹 20  3.1 研究區域地理概況 20  3.2 研究區域氣候概況 21  3.3 石筍樣品介紹 23 第四章 分析方法 26  4.1 鈾釷質譜定年 27   4.1.1 鈾系質譜定年原理 27   4.1.2 鈾系質譜定年實驗步驟 31  4.2 210Pb定年 33   4.2.1 210Pb定年原理 33   4.2.2 210Pb定年實驗步驟 34  4.3 XRD分析 35   4.3.1 XRD粉末繞射分析原理 35   4.3.2 XRD分析實驗步驟 36  4.4 碳氧穩定同位素分析 36   4.4.1 Kiel III - Delta XP plus IRMS分析原理 36   4.4.2 碳氧穩定同位素分析實驗步驟 37 第五章 分析結果與討論 39  5.1 210Pb分析結果 39   5.1.1 FR0510-1 210Pb分析結果 39   5.1.2 FR0510-2 210Pb分析結果 40   5.1.3 210Pb定年討論 40  5.2 鈾釷定年分析結果 45   5.2.1 鈾釷定年與210Pb定年結果對比 45   5.2.2 石筍生長速率 47  5.3 XRD分析結果 52  5.4 碳氧同位素分析結果 53   5.4.1 利用碳氧同位素特徵校正年齡 55   5.4.2 芙蓉洞霰石石筍碳同位素 57    5.4.2.1 有利於霰石石筍生長的條件 57    5.4.2.2 造成碳同位素偏重的因素 58   5.4.3 芙蓉洞霰石石筍氧同位素 60  5.5 芙蓉洞紀錄與其他石筍紀錄對比 61 第六章 結論 64 第七章 參考文獻 66 表目錄 表1-1、碳同位素在不同相之間的分餾係數(以1000lnα表示) 5 表5-1、FR0510-1 210Po活度表 42 表5-2、FR0510-2 210Po活度表 43 表5-3、FR0510-1鈾釷定年數據(萬乃容製,2008) 48 表5-4、FR0510-2鈾釷定年數據(萬乃容製,2008) 48 表5-5、FR0510-1鈾釷定年等時線數據表(萬乃容製,2008) 49 表5-6、FR0510-2鈾釷定年等時線數據表(萬乃容製,2008) 49 表5-7、芙蓉洞滴水、池水與泉水δ13C和δ18O 58 圖目錄 圖1-1、兩千年來溫室氣體變化趨勢(IPCC會議報告) 2 圖1-2、百年來全球年平均溫度(IPCC會議報告) 2 圖2-1、各種洞穴碳酸鹽沉積物 10 圖2-2、洞穴碳酸鹽沉積物形成示意圖(Fairchild et al. , 2006) 11 圖2-3、緯度效應、高程效應、雨量效應示意圖 15 圖2-4、石筍碳來源流程圖 19 圖3-1、中國重慶芙蓉洞平面圖(陳偉海製,2004) 21 圖3-2、重慶地區1905年到1993年各月份平均溫度 22 圖3-3、重慶地區1891年到1993年各月份平均降雨 22 圖3-4、芙蓉洞地理位置圖 23 圖3-5、FR0510-1石筍樣品 24 圖3-6、FR0510-2石筍樣品 25 圖4-1、FR0510-1各種儀器分析粉末樣品鑽取位置 26 圖4-2、FR0510-2各種儀器分析粉末樣品鑽取位置 27 圖4-3、MC-ICP-MS構造示意圖 30 圖4-4、離子變焦透鏡示意圖(賴諭萱,2006) 31 圖4-5、Kiel III - Delta XP plus IRMS 38 圖5-1、FR0510-1 210Po活度對石筍深度做圖 44 圖5-2、FR0510-2 210Po活度對石筍深度做圖 44 圖5-3、FR0510-1鈾釷定年之年齡對深度圖 50 圖5-4、FR0510-2鈾釷定年之年齡對深度圖 51 圖5-5、FR0510-1 XRD繞射圖譜 52 圖5-6、FR0510-2 XRD繞射圖譜 52 圖5-7、FR0510-1碳氧同位素隨時間變化圖 53 圖5-8、FR0510-2碳氧同位素隨時間變化圖 54 圖5-9、FR0510-1與FR0510-2年齡微調後碳同位素對比圖 56 圖5-10、FR0510-1與FR0510-2年齡微調後氧同位素對比圖 56 圖5-11、芙蓉洞與董歌洞、和尚洞石筍氧同位素紀錄對比 62 圖5-12、芙蓉洞與董歌洞、和尚洞近兩千年石筍氧同位素紀錄 63

    中文參考文獻:
    王建力,袁道先,李廷勇,何瀟,李清(2008),氣候變化的岩溶紀錄,北京科學出版社。
    朱學穩(1994),芙蓉洞的次生化學沉積物.中國岩溶, 13(4),p357-368.
    林柏宇(2006),利用無機沉澱溫控實驗探討碳酸鈣中穩定同位素及微量元素的分佈特性,國立成功大學地球科學所碩士論文。
    李廷勇,李紅春,李俊云,袁道先,王建力,葉明陽,唐亮亮,沈川州,葉成禮(2008),重慶芙蓉洞洞穴沉積物δ13C、δ18O特徵及意義,地質論評,第54卷第5期。
    李紅春,顧德隆,趙樹聲(1996),北京石花洞地區水系氫氧同位素及氚含量研究-石花洞研究系列之一,地震地質,18(4),p.325~328。
    李紅春,顧德隆,陳文寄,李鐵英(1997),利用洞穴石筍的δ13C和δ18O重建3000a以來北京地區古氣候和古環境-石花洞研究系列之三,地震地質,19(1),p.77~86。
    李紅春,顧德隆,陳文寄(1998),高分辨率洞穴石筍中穩定同位素應用之二:北京元大都建立後對樹林資源的破壞δ13C結果,地質評論,44 (5),p.456-463。
    劉東生,1985,黃土與環境,中國大陸科學出版社,第247-249頁
    劉建宇(2004),西南師範大學碩士研究生畢業論文《基於3S技術的武隆芙蓉江黑葉猴生態環境評價》。
    賴諭萱(2006),利用MC-ICP-MS及TIMS精確測量海水中鈣元素之同位素比值,國立成功大學地球科學所碩士論文。
    英文參考文獻:
    Cabrol P., 1978, Contribution a` l’e´tude du concre´tionnement carbonate´ des grottes du sud de la France, morphologie, gene`se et diagene`se: Centre d’Etudes et de Recherches Ge´ologiques et Hydroge´ologiques, Memoires, v. 12, Montpellier, France, 275 p.
    Cabrol P., Coudray J., 1982, Climatic fluctuations influence in the genesis and diagenesis of carbonate speleothems in southwestern France: Huntsville, Alabama, National Speleological Society, Bulletin, v. 44, p. 112–117.
    Coplen T. B., Winograd I. J., Landwehr J. M., Riggs A. C., 1994, 500,000-year stable carbon isotopic record from Devils Hole, Nevada, Science 21 January 1994: Vol. 263. no. 5145, pp. 361 – 365
    Cosford J., Qing H. R., Eglington B., Mattey D., Yuan D. X., Zhang M. L. and Cheng H., 2008, East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China, Earth and Planetary Science Letters, Volume 275, Issues 3-4, 15 November 2008, Pages 296-307
    Craig H., Gordon L. L., Horibe Y., 1965, Isotope exchange effect in the evaporation of water, 1. Low temperature experimental results. Journal of Geophysical Research 68, pp. 5079–5087.
    Dansgaard W., 1964, stable isotope in precipitation, Tellus, X VI (4), 436-468
    Davis D. G., Palmer M. V., Palmer A. N., 1990, Extraordinary subaqueous speleothemsin Lechuguilla Cave, New Mexico: Huntsville, Alabama, National Speleological Society, Bulletin, v. 52, p. 70–86.
    Denniston R. F., DuPree M., Dorale J. A., Asmeron Y., Polyak V. J., Carpenter S. J., 2007. Episodes of late Holocene aridity recorded by stalagmites from Devil's Icebox Cave, central Missouri, USA. Quaternary Research, 68: 45-52.
    Dorale J. A., Edwards R. L., Gonzlez L., Ito E., 1998. Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from Crevice Cave, Missouri, USA. Science, 282: 1871-1874.
    Dykoski C. A., Edwards R. L., Cheng H., Yuan D. X., Cai Y. J., Zhang M. L., Lin Y. S., Qing J. M., An Z. S., Revenaugh J., 2005, A high-resolution, absolute - dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters, Volume 233, Issues 1-2, 30, Pages 71-86.Epstein S., Mayeda T., 1953, Variation of 18O content of waters from natural sources. Geochimica et Cosmochimica Acta, v. 4, n. 5, 213-224.
    Emerich K., Ehhalt D. H., Vogel J. C., 1970, Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet. Sci. Lett. a,-363137 I.
    Emiliani C., 1955, Pleistocene temperature, Journal of Geology, 63, 538-578
    Epstein S., Buchsbaum R., Lowenstam H.A., Urey H.C., 1953, Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, v. 64, 1315-1326.
    Fairbridge, R. W., 1972, Climatology of a glacial cycle, Quaternary Research, 2(3), 238-302Fairchild I. J., Smith C. L., Baker A., Fuller L., Spotl C., Mattey D., McDermott F., 2006, Modification and preservation of environmental signals in speleothems. Earth Science Reviews . ISSN 0012-8252
    Fairchild I. J., Smith C. L., Baker A., Fuller L., Sptl C., Mattey D., McDermott F., E.I.M.F, 2006, Modification and preservation of environmental signals in speleothems. Earth-Science Reviews, 75: 105-153.
    Finch A. A., Shaw P. A., Weedon G. P., Holmgren K., 2001, Trace element variation in speleothem aragonite: potential for palaeoenvironmental reconstruction, Earth and Planetary Science Letters, Volume 186, Issue 2, 30 March 2001, Pages 255-267
    Fleitmann D., Burns S. J., Manginic A., Mudelseed M., Kramersa J., Villaa I., Neff U., Al-Subbarye A. A., Buettner A., Hipplera D., Matter A., 2007, Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews, 26: 170-188.
    Frisia S., Borsato A, Fairchild I. J., McDermott F., Selmo E. M., 2002, Aragonite-Calcite relationships in speleothems (Grotte De Clamouse, France): Environmental, Fabrics. and Carbonate geochemistry, Journal of Sedimentary Research; v. 72; no. 5; p. 687-699
    GRIP members, 1993, Climate instability during the last interglacial period recorded in the CRIP ice core, Nature,364, 203-207
    Grossman E. L., Ku T. L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chem. Geol. 59, 59-74.
    Harmon, R.S., Atkinson, T.C., Atkinson, J.L., 1983, The mineralogy of Castleguard Cave, Columbia Icefields, Alberta Canada: Arctic and Alpine Research, v. 15, p. 503–516.
    Helgeson H. C., Delany J. M., Nesbitt H. W., Byrd D. K., 1978, Summary and critique of the thermodynamic properties of rock-forming minerals: American Journal of Science, v.278A, p. 1–229.
    Hellstrom J., Mcculloch M., Stone J., 1998. A detailed 31,000-year record of climate and vegetation change, from the isotope geochemistry of two New Zealand speleothems. Quaternary Research, 50: 167-178.
    Hendy C. H., 1969, The isotope geochemistry of speleothems and its application to the study of past climates. Geochimica et Cosmochimica Acta, vol. 35, Issue 8, pp.801-824
    Hill C.A., 1999, Mineralogy of Kartchner Caverns, Arizona: Journal of Cave and Karst Studies, v. 61, p. 73–78.
    Hu C. Y., Henderson G. M., Huang J. H., Xie S. C., Sun Y., Johnson K. R., 2008, Quantification of Holocene Asian monsoon rainfall from spatially separated cave records, Earth and Planetary Science Letters 266 (2008) 221–232
    Huang Y., Fairchild I. J., Borsato A., Frisia S., Cassidy N. J., McDermott F., Hawkesworth, C. J., 2001, Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy). Chemical Geology, 175, 429-448.
    Lauritzen S. E., 1995, High-Resolution Paleotemperature Proxy Record for the Last Interglaciation Based on Norwegian Speleothems, Quaternary Research, Volume 43, Issue 2, March 1995, Pages 133-146
    Li H. C., Ku T. L., You C. F., Cheng H., Edwards R. L., Ma Z. B., Tsai W. S., Li M. D., 2005, 87Sr/86Sr and Sr/Ca in speleothems for paleoclimate reconstruction in Central China between 70 and 280 kyr ago. Geochimica et Cosmochimica Acta 69: 3933-3947.
    McCrea J. M., 1950, On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18, 849-853.
    O'Neil J. R., Epstein S., 1966, Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide. Science, 152, 198-201.
    O'Neil J. R., Clayton R. N., 1964, Oxygen isotope geothermometry. In isotopic and cosmic chemistry (eds.Craig, H. Miller, S.L. and Wasserburg, G.J.), North-Holland, Amsterdam, 157-168.
    O'Neil J. R., Clayton R. N., and Mayeda T. K., 1969, Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys. 51, 5547-5558.
    O'Neil J. R., 1986, Theoretical and experimental aspects of isotopic fractionation. In Stable Isotopes in High Temperature Geological Processes (ed. J. W. Valley et al.); Rev. Mineral. 16, 1-40.
    O'Neil J. R., Barnes I., 1971, C-13 and O-18 compositions in some fresh-water carbonates associated with ultramafic rocks and serpentinites, western United States. Geochim. Cosmochim. Aeta 35, 687-697.
    O'Neil J. R., Truesdell A. H., 1991, Oxygen isotope fractionation studies of solute-water interactions. In Stable Isotope Geochemistry: A Tribute to Samuel Epstein (ed. H. P. Taylor, Jr. et al.); Geochem. Soe. Spec. Publ. 3, 17-25.
    O'Neil J. R., Adami L., and Epstein S., 1975, Revised value for the O 18 fractionation between CO2 and H20 at 25°C. J. Res. US Geol. Surv. 3, 623-624.
    Roberts M. S., Smart P. L., Baker A., 1998, Annual trace element variations in a Holocene speleothem. Earth and Planetary Science Letters, 154, p237-246。
    Romanek C. S., Grossman E. L., Morse J. W., 1992, Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate, Geochimica et Cosmochimica Acta Vol. 56, pp. 419-430
    Rozanski K., Aragus-Aragus L. and Gonfiantini R., 1993. Isotopic patterns in modern global precipitation. In: P.K. Swart, K.C. Lohmann, J. McKenzie and S. Savin (Eds), Climate Change in Continental Isotopic Records. Geophysical Monograph 78, American Geophysical Union, Washington, D.C, pp.1-36.
    Rubinson M., Clayton R. N., 1969, Carbon-13 fractionation between aragonite and calcite,Geochimica et Cosmochimica Acta, Volume 33, Issue 8, Pages 997-1002.
    Sunagawa I., 1984, Growth of crystals in nature, in Sunagawa, I., ed., Material Science of the Earth’s Interior: Tokyo, Tokyo Scientific Publishing Company, p. 63–105.
    Turin, H.J., Plummer, M.A., 2000, Lechuguilla cave pool chemistry, 1986–1999: Journal of Cave and Karst Studies, v. 62, p. 135–143.
    Turnbull A.G., 1973. A thermochemical study of vaterite. Geochim. Cosmochim. Acta 37, pp. 1593–1601.
    Turner J. V., 1982, Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochim. Cosmochim. Acta 46, 1183-1191.
    Urey H. C. (1947) The thermodynamic properties of isotopic substance, J. Chem. Soc. (London) 562-581
    Wang Y. J., Cheng H., Edwards R. L., An Z. S., Wu J. Y., Shen C. C., Dorale J. A., 2001. A High-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294: 2345-2348.
    Wang Y. J., Cheng H., Edwards R. L., He Y. Q., Kong X. G., Zn Z. S., Wu J. Y., Kelly M. J., Dykoski C. A., Li X. D., 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308: 854-857.
    Wang Y. J., Cheng H., Edwards R. L., Kong X. G., Shao X. H., Chen S. T., Wu J. Y., Jiang X. Y., Wang X. F., An Z. S., 2008. Millennial- and orbital-scale changes in the east Asia monsoon over the past 224000 years. Nature, 451: 1090-1093.
    Yuan D. X., Cheng H., Edwards R. L., Dykoski C. A., Kelly M. J., Zhang M. L., Qing J. M., Lin Y. S., Wang Y. J., Wu J. Y., Dorale J. A., An Z. S., Cai Y. J., 2004. Timing, duration, and transitions of the last interglacial Asian monsoon. Science, 203: 575-578.
    Zhang P. Z., Cheng H., Edwards R. L., Chen F. H., Wang Y. J., Yang X. L, Liu J., Tan M., Wang X. F., Liu J. H., An C. L., Dai Z. B., Zhou J., Zhang D. Z., Jia J. H., Jin L. Y., Johnson K. R., 2008, A test of climate, sun, and culture relationships from an 1810-Year Chinese cave record, Science 322, 940

    下載圖示 校內:2010-07-09公開
    校外:2010-07-09公開
    QR CODE