| 研究生: |
陳良彰 Chen, Liang-Jhang |
|---|---|
| 論文名稱: |
熱遲滯現象之數值分析 Numerical Analysis for the Thermal Lagging Behavior |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 有限差分法 、熱遲滯 |
| 外文關鍵詞: | thermal lagging behavior, finite difference method |
| 相關次數: | 點閱:61 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討在微尺度空間及時間下,熱遲滯現象相關的時間延遲效應,在不同模式中熱傳效應的影響,物理模式分別為Diffusion model、CV wave model、dual-phase-lag model,前者為傳統傅立葉熱傳導方程式,後兩者為雙曲線之微觀熱傳導方程式。CV wave model比Diffusion model多一項溫度對時間的兩次微分項,dual-phase-lag model又比CV wave model多一項溫度對空間兩次微分,對時間一次微分的混合項,此兩項在數值計算時,容易產生震盪和發散。
模擬分析時,以兩個物理模型來分析熱遲滯現象,第ㄧ個是給定高低溫邊界,同時將其無因次化;另ㄧ個則是給定絕熱邊界,並加入ㄧ雷射熱源。以數種不同數值方法,來模擬這兩個模型,並將計算結果和解析解作比較,探討這些數值方法的優缺點,並比較其準確度。從計算結果,可得知在探討第一個物理模型時,隱性法(空間項中央差分、時間項中央差分)為最佳的數值方法,無須考慮穩定度條件且累加誤差最小。在分析第二個物理模型時,顯性法則為最佳之數值方法,但須注意其穩定度的條件。
Under the micro-scale condition of space and time, this paper is to study the time-lagging effect caused by the thermal lagging behavior and its heat transfer effects in three mathematical models, which are the diffusion, CV wave and dual-phase-lag models. The first one is the Fourier’s heat conduction equation and the others are the hyperbolic equations. The CV wave model is more than the diffusion one by one term of second order time derivative and the dual-phase-lag model is more than the CV one by one term of second order time-and-space mixed derivative. These two extra terms make the numerical calculation oscillate and diverge easily.
In the one-dimensional simulation analysis, two physical models are applied. In the first one, the high and low temperature boundaries are used and the model is expressed in the dimensionless form. In the second one, the heat-insulated boundaries and laser heat source are utilized. Several numerical methods are used to simulate these two physical models and the computing results are compared with the exact ones. From the analysis results, it can be found that the implicit method (centered difference for the derivatives of space and time) is the best one for the first physical model without any stability problems. For the second model, the explicit method is the best one, but it needs to take the stability criterion into account.
1. 蔡宗汶,“多層金屬薄膜微觀熱傳導與熱彈力問題之分析”, 逢甲大學航太與系統工程學系碩士論文,2006。
2. Grigoropoulos, C. P., “Heat Transfer in Laser Processing on Thin Films,” Ann. Rev. Heat Transfer, Vol. V, Hemisphere, New York, pp.77-130, 1994.
3. Maex, K., “Rapid Thermal Processing and Thin Flim Techologies,” Microelectronic Engineering,Vol.15, pp.467-474, 1991.
4. Tzou, D. Y.,“Macro- to Micro-scale Heat Transfer: The
Lagging Behavior,” Taylor & Francis, Washington, DC,
1997.
5. Fourier, J. B., Theorie Analytique de la Chaleur,Paris,English translation by Freeman, A., The Analytical Theory of Heat, Dover Publications,Inc., New York, 1955.
6. Joseph, D. D., and Preziosi, L.,“Heat waves,” Rev.Mod Phys.61, pp.41-73, 1989.
7. Caviglia, G., Morro, A., and Straughan, B.,“Thermoelasticity at cryogenic temperatures,” Int. J. Non-Linear Mech.27, pp.251-263, 1992.
8. Antaki, P. J., “Hotter than you think,Mach.,” Des.13, pp.116-118, 1995.
9. Flik, M. I., Choi, B. I., and Goodson, K. E., “Heat transfer regimes in microstructures,” J. of Heat Transfer, ASME, vol.114, pp.666-674, 1992.
10. Tien, C. L., and Chen, G..,“Challenges in microscale conductive and radiative heat transfer,” Invited Review Paper, J. of Heat Transfer, ASME, vol.116, pp.799-807, 1994.
11. Qiu, T. Q., and Tien, C. L., “Size effects on nonequilibrium laser heating of metal films,” J. of Heat Transfer, ASME, Vol.115, pp842-847, 1993.
12.Kaganov, M. I., Lifshitz, I. M., and Tanatarov, L. V.,
“Relaxation between Electrons and Crystalline lattices,” Soviet
Physics JEPT, Vol. 4, pp. 173-178, 1957.
13. Anisimov, S. I., Kapeliovich, B. L., and Perel’man, T. L., “Electron Emission from Metal Surfaces Exposed to Ultra-Short Laser Pulses,” Soviet Physics JEPT, Vol. 39, pp.6914-6916, 1974.
14. Peshkov ,V.,“Second sound,” in helium II, J.Phys.VIII, 381, 1994.
15.Chester, M., ”Second Sound in Solids, ”Physical Review, vol.131, No.5, pp.2013-2015, 1963.
16. Bertman, B. and Sandiford, D. J.,“Second sound” in solid helium, Scient. Am. 222, 92-101, 1970.
17. Qiu, T. Q., and Tien, C. L., “Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals,” ASME Journal of Heat Transfer, Vol.115, pp.835-841, 1993.
18 Guyer, R. A., and Krumhansel, J. A., “Solution of the Linearized
Boltzmann Equation,” Physical Review, Vol.148, pp.766-778, 1966.
19.Majumdar, A.,“Microscale Heat Conduction in Dielectric Thin Films,” ASME Journal of Heat Transfer, Vol.115, pp.7-16, 1993
20.Cattaneo, C., “A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation,” Compte Rendus, Vol. 247, pp. 431-433, 1958.
21. Vernotte, P., “Les Paradoxes de la Theorie Continue del’equation De La Chaleur,” Compte Rendus, Vol. 246, pp.3154-3155, 1958.
22. Vernotte, P., “Some Possible Complications in the Phenomena of Thermal Conduction,” Compte Rendus, Vol.252, pp.2190-2191, 1961.
23.Stratton, J. A., “Electronmagnetic Theory, ” McGraw-Hill, New York, pp.301-303, 1941.
24.Maurer, M. J.,“Relaxation Model for Heat Conduction in Metals,” Journal of Applied Physics, Vol.95, pp.284-286, 1969.
25.Maurer, M. J.,and Thompson, H. A.,“Non-Fourier Effects at High Heat Flux,” Journal of Heat Transfer, Vol.95, pp.284-286, 1973.
26.Kazimi, MS, and Erdman, CA, “On the Interface Temperature of Two Suddenly Contacting Materials,” ASME J. Heat Transfer, 97, pp. 615–617, 1975.
27.Kao, T. T.,“Non-Fourier Heat Conduction in Thin Surface Layers,” Journal of Heat Transfer, Vol.99, pp.343-345, 1977
28.Glass, D. E., Ozisik, M. N., and Vick,B.,“Hyperbolic Heat Conduction with Surface Radiation,” International Journal of Heat and Mass Transfer, vol. 28, pp.1823-1830, 1985.
29.Glass, D. E., Ozisik, M. N., McRae, D.S., and Vick, B.,“Hyperbolic Heat Conduction with Temperature-Dependent Thermal Conductivity,” Journal of Applied Physics, Vol. 59, No.6, pp.1861-1865, 1986.
30.Tzou, D. Y., “A Unified Field Approach for Heat Conduction from
Micro- to Macro-Scales,” ASME Journal of Heat Transfer, Vol. 117, pp.8-16, 1995.
31.Tzou, D. Y., “The Generalized Lagging Response in Small-Scale and High-Rate Heating,” International Journal of Heat and Mass Transfer, Vol.38, pp. 3231-3240, 1995.
32.Tzou, D. Y., “Experimental Support for the Lagging Response in Heat Propagation,” AIAA Journal of Thermophysics and Heat Transfer, Vol.9, pp.686-693, 1995.
33.Hays-Stang,K. J., and Haji-Sheikh, A.,“A unified Solution for Heat Conduction in Thin Films,” International Journal of Heat and Mass Transfer, Vol. 42, pp.155-465, 1999.
34.Anyaki, P. J.,“Solution for Non-Fourier Dual Phase Lag Heat Conduction in a Semi-infinite Slab with surface heat Flux,” International Journal of Heat and Mass Transfer, Vol.41, No.14, pp.2253-2258, 1998.
35. Chen, G., “Ballistic-Diffusive Equations for Transient Heat Conduction from Nano to Macroscales,” ASME Journal of Heat Transfer, Vol. 124, pp.320-328, 2002.
36. Shuichi Torii and Wen-Jei Yang, “Heat transfer mechanisms in thin film with laser heat source,” International Journal of Heat and Mass Transfer, Volume 48, Issues 3-4, pp.37-544, 2005.
37. Kwong-Shing Kevin Chiu, ”Temperature Dependent Properties And Microvoid In Thermal Lagging,” 1999.
38.Anisimov, S. I., Kapeliovich, B. L., and Perel’man, T. L. ”Electron Emission from Metal Surfaces Exposed to Ultra-Short Laser Pulse,” Soviet Physics JETP, Vol. 39, pp.375-377, 1974.
39.Anderson, John David,“Computational fluid dynamics :the basics with applications, ” 1995.
40.Tzou, D.Y., Chiu, Kevin K.S., ”Depth of Thermal Penetration:Effect of Relaxation and Thermalization,” AIAA of Thermophysics & Heat Transfer, Vol. 13, pp.166-269, 1999
41.Qiu, T, Q., Tien, C. L., “Short-Pulse Laser Heating on
Metals,” International Journal of Heat and Mass Transfer, Vol.35, pp.719-726, 1992.
42. Qiu, T, Q., Tien, C. L., ”Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals,” ASME Journal of Heat Transfer, Vol.115, pp.835-841, 1993.
43. Qiu, T, Q., Tien, C. L., ”Femtosecond Laser Heating of Multi-Layered Metals –I. Analysis,” International Journal of Heat and Mass Transfer, Vol.37, pp.2789-2797, 1994.
44.Anderson, D. A., Tannehill, J. C. and Pletcher, R. H.,“Computational Fluid Mechanics and Heat Trans,”Hemisphere, 1990.
45.Weizhong Dai, Raja Nassar,“A Three-Level Finite-Difference Scheme For Solving Micro Heat Transport Equations With Temperature-Dependent Thermal Properties,” Numerical Heat Transfer, Part B.vol.43, pp509-523, 2003.