| 研究生: |
林志昀 Lin, Chih-Yun |
|---|---|
| 論文名稱: |
氧化釹添加於硼系與磷系之釩鐵玻璃系統之研究及其應用於LED元件之雷射輔助封合技術之探討 Study on addition of neodymium oxide to boron-based and phosphorous-based vanadium-iron glass systems and these applications to laser-assist sealing technology for LED devices |
| 指導教授: |
申永輝
Shen, Yun-Hwei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 玻璃粉 、氧化釹 、LED 、雷射 、封合 |
| 外文關鍵詞: | glass frit, Nd2O3, LED, laser, encapsulation |
| 相關次數: | 點閱:77 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要分為兩大主軸。第一是研究及發展出低溫的無鉛玻璃粉,並分析其物理及光學特性;第二是以雷射加熱之封裝技術應用在於LEDs/OLEDs之元件並搭配其低溫玻璃粉的研究。
稀土材料氧化釹(Nd2O3)的優點主要用作玻璃、陶瓷的著色劑,製造金屬釹的原料和強磁性釹鐵硼的原料,添加少量的氧化釹,可提高整體材料的氣密性和耐腐蝕性。另外,對於機械性質與耐磨耗能力的表現上均有程度上的影響,故將其納入實驗中並探討其於玻璃系統中的特性。
低溫玻璃粉系統分為硼系(Fe2O3–V2O5–B2O3)及磷系(Fe2O3–V2O5–P2O5)之無機無鉛玻璃做探討,並透過添加稀土氧化釹(Nd2O3) 0mol%~5mole%於玻璃系統中,分析其物理與光學特性,Nd2O3濃度變化顯著影響玻璃密度和摩爾體積的行為。隨著Nd2O3濃度的增加,非鍵結氧數目(Non-bridging oxygen, NBO)也升高,理論折射率和電子氧化物離子極化率由Lorentz-Lorenz方程式計算。而且,兩種玻璃粉在Nd2O3添加下均,被證實具有高折射率和高電子氧化物離子極化率。此外,通過Duffy-Ingram函數計算出此玻璃具有高光學鹼度(Optical basicity) ,相對地,折射率基底的金屬化標準(Metallization criterion of refractive index base)下降。在缺陷方面的討論,光學能隙(Optical energy band gap)與非鍵結氧數量成反比的關係。
雷射封裝技術已逐漸大量地應用於高端電子封合需求。傳統高溫封裝過程中,大幅降低或是損壞電子元件壽命。光纖雷射(Fiber Laser)以局部區域的(Localized)加熱方法可避免整面式的(Global)加熱並且大幅降低元件耗損。因添加Nd2O3後,於波長808 nm有明顯之吸收峰,此次光纖雷射選用以808nm波長為主,並分析與比較其與市售之環氧樹酯封合後之表面微結構與電性及照光度無差異。然而,高溫爐封裝之LED元件,已出現高電阻與漏電的現象,原因為全面式高溫接合(溫度約680°C)導致元件受損(須低於400°C),而之前的實驗得知,此兩種玻璃粉之最低熔點均若在650°C~690°C之間,在不添加鉛、鉍等材料情況下,降低玻璃熔點溫度亦為另一改善之方向。相對地,局部性的雷射加熱方法可將熱傷害降到最小,並且可依據材料外觀與形貌做客製化的製程。
實驗最終以耐候性測試(Reliability test)比較玻璃粉在於以雷射加熱之封裝與傳統封裝後的電性與照明度的表現作為之依據。經過高溫高濕及鹽化的惡劣環境下,證實以硼系之玻璃粉搭配雷射封合方法於長時間測試下,可以完全阻絕外界環境的水氣與氧氣的穿透;然而,LED元件因於高溫傳統式的封裝時,元件已經被損壞,無法針對其作討論。市售之環氧樹酯亦無法在長時間於潮濕的環境下有良好的密封效果,也間接驗證了塑化材料本身對於抵擋光與水氣有較差的能力及不適用於在戶外及嚴苛環境下的產品封合。
Glass frit encapsulation for laser-base sealing of the complex interiors results challenges for the electronics manufacturing process. The heating modes have been studies and developed over past decades. The traditional modes, especially oven and furnace, are widely used to manufacturing.
While the sealing by furnace reports to the worst in electrical characteristics and illuminating, the performance of by laser source presents the comparable to commercialization. The conventional frit packaging method relies on elevating thermal process by furnace where the package is heated to reach the required temperature, hence limiting the use of temperature-sensitive materials, such as LED or OLED, and also generating unpredictable problems in different packaging processes or multi-stage sealing products. In this thesis, the benefits of combining novel laser-assist hermetical sealing and low temperature glass frit packaging are demonstrated and the technique offers a suitable and feasible solution.
The advantages of neodymium oxide (Nd2O3) are mainly used as a color coder for glass and ceramics, raw materials for metal tantalum and ferromagnetic neodymium-iron-boron materials. Furthermore, this is able to improve the hermeticity and corrosion resistance of the entire material. In addition, there is a certain extent of influence on the performance of mechanical properties and wear resistance. Therefore, it is included in this experiment and its characteristics in the glass systems are discussed.
In addition, the study also includes to the rare earth Nd2O3 doped glass systems, namely B2O3–V2O5–Fe2O3 (BVF) and P2O5–V2O5–Fe2O3 (PVF) are jointly evaluated for physical and optical properties. Quaternary oxide glasses Nd2O3–B2O3–V2O5–Fe2O3 and Nd2O3–P2O5–V2O5–Fe2O3 are prepared by conventional melt quench technique and Nd2O3 plays as glass modifier influencing on the conversion between of BO3 and BO4, PO5 and PO4 and of VO5 to VO4 along with the NBO. This objective is to seek for a lower melting temperature glass frit and appropriate adhesive material. As knew, the rare earths have specific wavelength of absorption, supplying to the selection of laser, utilized this trait to fierce vibration, and then heating up rapidly in the very short period.
Then follows the density, molar weight, etc., report to the meaningful relationship to refractive index. With the increase in Nd2O3 content, refractive index, and optical basicity show upward trends; by contrast, optical energy band gap and metallization criterion represent to reverse correlation. Meanwhile, the optical energy band gap is often used to illustrate the interaction between electrons and holes by absorption of wavelength, and determine its color and conductivity, especially in semiconductor materials, and PVF is roughly twofold the optical energy band gap of BVF.
Laser packaging technology has gradually been applied to high-end electronic sealing requirements. In the traditional high-temperature packaging process, the life of electronic components is considerably damaged. The localized heating method of laser avoids this damage by global heating, and meanwhile, significantly reduces component loss. Due to the addition of Nd2O3, there is a clear absorption peak at 808 nm, analyzed by UV-Vis. The wavelength of 808 nm is as the dominant wavelength, and analyzes, and subsequently, compares the surface microstructure and electrical properties after being sealed by laser-assist heating with a commercially epoxy resin. However, high resistance and leakage have occurred in high-temperature furnace packages, due to the fact that high-temperature melting (temperature of about 680°C) results in the damage of LED device (typically, the adorable maximum temperature of LED is below 400°C). According to previous experiment, the minimum melting point of both glass systems (BVF & PVF) is between 650°C and 690°C which is much higher. Without adding lead, and bismuth materials, lowering the glass melting point is another project in the future. In stark contrast, localized laser heating method can minimize the damage by thermal accumulation.
The advantage of laser glass frits bonding is the non-stringent requirements of high bonding strength and low stress at the juncture interface, good process yield, repeatability, air-tight sealing and flatness of the surface to be bonded. These advantages are combined with local heating and controllable processes based on the low melting glass frit of the laser process described herein. As can be seen, commercialized product, epoxy resins cannot provide well sealing capability under long-term humid conditions, and indirectly demonstrate that plasticized materials cannot affordable to withstand light and moisture and are also unsuitable sealing applications for outdoor and harshness products.
[1] S. Patel, D. Delaney, et al., Characterization of glass on electronics in MEMS, Proc. SPIE, Mater. Device Character. Micromach., Vol. 3875, pp. 73-78, Sep. 1999.
[2] S. Logunov, S. Marjanovic, J. Balakrishnan, Laser assisted frit sealing for high thermal expansion glass, JLMN-Journal of Laser Micro/Nanoengineering, Vol. 7, No. 3, pp. 326-333, 2012.
[3] V. S. Veerasamy, and M. D. BRACAMONTE, Low temperature hermetic sealing via laser, US20140087099A1.
[4] R. Cruz, et al., Glass-glass laser-assisted glass frit bonding, IEEE Transactions on Components, Packaging and manufacturing Technologies, vol. 2, no. 12, pp. 1949-1956, Dec 2012.
[5] H. Kind, E. Gehlen et al., Laser glass frit sealing for encapsulation of vacuum insulation, Physics Procedia, Vol 56, pp. 673-680, 2014.
[6] R. Knechtel, M. Wiemer, and J. Fromel, Wafer level encapsulation of microsystems using glass frit bonding, Microsyst. Technol., vol. 12, no. 5, pp. 468–472, Mar. 2006.
[7] W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, Direct joining of glass substrates by 1kHz femtosecond laser pulse, Appl. Phys. B Lasers Opt., vol. 87, no. 1, pp. 85-89, Mar. 2007.
[8] Q. Wu, N. Lorenz, K. M. Cannon, and D. P. Hand, Glass frit as a hermetic joining layer in laser based joining of miniature device, IEEE Transactions on Components and Packaging Technologies, vol. 33, no. 2, pp. 470-477, 2010.
[9] T. F. Marinis and J. W. Soucy, Novel low temperature hermetic sealing of micropackages, Electronic Components and Technology Conference (ECTC) IEEE, 61st, pp. 1552-1561, 2011.
[10] R. G. Frieser, A Review of Solder Glasses, Electrocomponent Science and Tech., pp. 163-199, Vol.2 (1975).
[11] Y. Kim, D.H. Lee, W.J. Kim, P. Sung, H.N. Kim, D. B. Lee, and J.C. Lee,” Effect of Glass Viscosity on Gas Leak Rate in Glass Seals for Solid Oxide Fuel Cell Applications,” Rev. Adv. Mater. Sci. 28 (2011) 111-115.
[12] J. J. Shyu and M. T. Chiang, Sintering and Phase Transformation in B2O3/P2O5- Doped Li2O•Al2O3•4SiO2 Glass-Ceramics, J. Am. Ceram. Soc., 83 (2000) 635-39.
[13] S.C. Liu, Y.I. Chen, J.J. Shyu, H.Y. Tsai, K.Y. Lin, Y.H. Chen, and K.C. Lin, The Chemical Inertness of Ir-Re and Ta-Ru Coatings in Molding B2O3-ZnO-La2O3-Based Glass, Surf. Coat. Tech., 259, Nov., 352-357, 2014.
[14] B. G. Aitken, D. C. Bookbinder, M. E. Green and R. M. Morena, Non-lead sealing glasses, US Patent 5,246,890 (1993).
[15] R. Morena, “Fusion sealing materials an R. H. Dalton, Soft glass and composite article, US Patent 2,642,633 (1953).
[16] Bing Zhang, Qi Chen, Li Song, Huiping Li, Fengzhen Hou, Jinchao Zhang, Fabrication and properties of novel low-melting glasses in the ternary system ZnO–Sb2O3–P2O5, Journal of Non-Crystalline Solids, 354, pp. 1948–1954, 2008.
[17] Masahiro Y, Yasuo H, Toshimitsu U et al., Lead-free Glass Material for Use in the Sealing and Sealed Article and Method for Sealing Using the Same [P], US Pat.: US7585798B2, 2009-09-08.
[18] Emsley, John (2003), Nature's Building Blocks, Oxford University Press, pp. 268–9, ISBN 978-0-19-850340-8, retrieved 2009-03-18
[19] H. Kind, et al., Laser Glass Frit Sealing for Encapsulation of Vacuum Insulation Glasses, 8th International Conference on Laser Assisted Net Shape Engineering, volume 56, 2014, pp. 673-680 2014
[20] 洪國凱,張誌原,黃旭晴,郭艷光, 紫外光氮化鎵面射型半導體雷射之設計與分析, 光學工程 74期 ( 2001) 48-52
[21] Li Jing, Xie Zhao-hui, Zhu Qing-shan, Tong Hua, Wang Jing-gang, Peng Lian , Property of Lead-free Low Melting Glass of P2O5−V2O5−B2O3−ZnO System for Electronic Sealing Application, The Chinese Journal of Process Engineering , Apr. 2010.
[22] D. Maurice, H. Robert, B. Joseph, Low-expansion, low-melting zinc phosphovanadate glass compositions, US Patent 3650778, 1972.
[23] F. Liebau, in: M. O'Keefe, A. Novrotsky (Eds.), Structure and Bonding in Crystals II. Academic Press, New York, 1981, pp. 197.
[24] R. K. Brow, Review:the Structure of Simple Phosphate Glasses, J. Non-Cryst. Solids, 263&264, 1-28 (2000).
[25] X. Yu, D. E. Day, G. J. Long, R. K. Brow, Properties and structure of sodium-iron phosphate glasses, J. Non-Cryst. Solids, 215, pp. 21-31, 1997.
[26] R.K. Brow, L. Kovacic , US Patent 5262364, 1993.
[27] P.J. Bray in A. Bishay, Ed., Interaction of Radiation with Solid, Plennum Press, New York, 1967
[28] Duk-Nam Kim , Jae-yeol Lee , Jeung-Soo Huh , Hyung-sun Kim , Thermal and electrical properties of BaO–B2O3–ZnO glasses, Journal of Non-Crystalline Solids, 306, pp. 70–75, 2002.
[29] J. J. Hudgens, R. K. Brow, D. R. Tallant and S. W. Martin, Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses, J. Non- Cryst. Solids 223 (1998) 21-31.
[30] M. Nagaswa and H. Watanabe, UK Patent No. 1358930 (1971).
[31] M. Regan and C. F. Drake, High current glass switches, Materials Research Bulletin 6 (1971) 487–490.
[32] C. G. S. Pillai, V. Sudarsan, M. Roy, A. K. Dua, Structural aspects of PbO–P2O5 glasses containing ThO2, J. Non-Cryst. Solids 321 (2003) 313-317.
[33] R. A. Montani, M. Le ́vy, and J. L. Souquet, An electrothermal model for high-field conduction and switching phenomena in Te2O2-V2O5 glasses, J. Non-Cryst. Solids 149 (1992) 249–256.
[34] A. Chahine, M. Et-tabirou, J. L. Pascal, FTIR and raman spectra of the Na2O-CuO-Bi2O3-P2O5 glasses, Mater. Lett. 58 (2004) 2776-2780.
[35] A. Moguš-Milanković, A. Šantić, A. Gajović, D. E. Day, Spectroscopic investigation of MoO3–Fe2O3–P2O5 and SrO–Fe2O3–P2O5 glasses. Part I, J. Non-Cryst. Solids 325 (2003) 76-84.
[36] S. T. Reis, D. L. A. Faria, J. R. Martinelli, W. M. Pontuschka, D. E. Day, C. S. M. Partini, Structural features of lead iron phosphate glasses, J. Non-Cryst. Solids 304 (2002) 188-194.
[37] N. F. Mott, Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1–17.
[38] I. G. Austin and N. F. Mott, Polarons in crystalline and non-crystalline materials, Advances in Physics 18 (1969) 41–102.
[39] V. Kundu, R. L. Dhiman, A. S. Maan, and D. R. Goyal, Structural and physical properties of Fe2O3-B2O3-V2O5 glasses, Adv. in Condensed Matter Physics 10 (2008) 1-7.
[40] L. Muraswski, C. H. Chung and J. D. Mackenzie, Electrical properties of semiconducting oxide glasses, J Non- Cryst. Solids 32 (1979) 91-104.
[41] C. H. Cheng and J. D. Mackenzie, Electrical properties of binary semiconducting oxide glasses containing 55 mole % V2O5, J Non- Cryst. Solids 42, (1980) 357-370.
[42] M. Chinkhota, P. S. Fodor, G. D. Khattak, L. E. Wenger, Investigation of the magnetic properties in strontium-borate vanadate glasses, J of Appl. Phys. 91 (2002) 8269-8271.
[43] V. Kundu, R. L. Dhiman, D. R. Goyal, A. S. Maan, Physical and electrical properties of semiconducting Fe2O3-V2O5-B2O3 glasses, Optoelectron. Adv. Mat. 2 (2008) 428 – 432.
[44] E. I. Kamitsos, M. A. Karakassides and G. D. Chyssikos, Vibrational spectra of magnesium-sodium-borate glasses: 2. Raman and mid-infrared investigation of the network structure, J. Phys. Chem. 91 (1987) 1073-1079.
[45] A. Ghosh and B. K. Chaudhuri, Preparation and characterization of binary V2O5-Bi2O3 glasses, J. Mat. Sci. 22 (1987) 2369–2376.
[46] U. Selvaraj and K. J. Rao, Characterization studies of molyb-dophosphate glasses and a model of structural defects, J. Non-Cryst. Solids 72 (1985) 315–334.
[47] G. E. Keiser, Optical Fiber Communications, McGraw- Hill Higher Education-International Editions: Electrical Engineering Series, 3rd edition, 2000.
[48] J. M. Senior, Optical Fiber Communications: Principles and Practice, Prentice Hall, 2nd edition, 1992.
[49] A. Pan and A. Ghosh, New family of lead-bismuthate glass with a large transmitting window, J. Non-Cryst. Solids 271(2000) 157–161.
[50] A. R. Devi, C. K. Jayasankar, Optical properties of Nd3+ ions in lithium borate glasses, Mater. Chem. Phys. 42 (1995) 106-119.
[51] V. Mehta, G. Aka, A. L. Dawar, and A. Mansingh, Optical properties and spectroscopic parameters of Nd3+-doped phosphate and borate glasses, Opt. Mater. 12 (1999) 53-63.
[52] Y. Nageno, H. Takebe, and K. Morinaga, Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses, J. Am. Ceram. Soc. 76 (1993) 3081-3086.
[53] E. Pecoraco, J. A. Sampaio, L. A. O. Nunes, S. Gama, and M. L. Baesso, Spectroscopic properties of water free Nd2O3-doped low silica calcium aluminosilicate glasses, J. Non-Cryst. Solids 277 (2000) 73-81.
[54] M. B. Saisudha, K. S. R. K. Rao, H. L. Bhat, and J. Ramakrishna, The fluorescence of Nd3+ in lead borate and bismuth borate glasses with large stimulated emission cross section, J. Appl. Phys. 80 (1996) 4845-4853.
[55] S. Mukhopadhyay, K. P. Ramesh, R. Kannan, and J. Ramakrishna, Rare-earth ion-assisted nuclear spin-lattice relaxation in Nd3+-doped binary sodium borate glasses: B 11 NMR study, Phys. Rev. B 70 (2004) 224202.
[56] A. Mekki, D. Holland, K. A. Ziq, and C. F, McConville, Structureal and magnetic properties of sodium iron germinate glasses, J. Non-Cryst. Solids 272 (2000) 179-190.
[57] R. Parmar, R. S. Kundu, R. Punia, N. Kishore, and P. Aghamkar, Fe2O3 modified physical, structural, and optical properties in bismuth silicon glasses, J. Mat. 2013 (2013) 650207-650211.
[58] 黃孟嬌, “2017全球LED照明產業三大趨勢” 2016/12/06
[59] Light emitting diodes from Wikipedia, https://en.wikipedia.org/wiki/Light-emitting_diode
[60] Edison tech center, http://www.edisontechcenter.org/LED.html
[61] N. Narendran et al., Life of LED-based white light sources, Journal of Display Technology, vol. 1 (2005 ) 167-171
[62] N. Narendran, J. Bullough, N. Maliyagoda, and A. Bierman, What is useful life for white light LEDs?, J. Illum. Eng. Soc., vol. 30, no. 1, pp. 57–67, 2001.
[63] Kryszczuk, K. M., & Boyce, P. R. 2002. Detection of slow light level reduction, Journal of the Illuminating Engineering Society, 31, 3-10.
[64] Y. Gu, N. Narendran, T. M. Dong, H. Y. Wu, Spectral and luminous efficacy change of high-power LEDs under different dimming methods, Proceedings Volume 6337, Sixth International Conference on Solid State Lighting; 63370J (2006)
[65] Patel, S., et al., Characterization of glass on electronics in MEMS, In: Proceedings of SPIE-Materials and Device Characterization in Micromachining II, vol. 3875, pp. 73–78. Santa Clara (1999)
[66] Beckett, P.M., Fleming, A.R., Foster, R.J., Gilbert, J.M., Whitehead, D.G.,The application of semiconductor diode lasers to the soldering of electronic components. Opt. Quant. Electron. 27(12), 1303–1311(1995)
[67] Logunov, Stephan, et al., Laser assisted frit sealing for high thermal expansion glasses. JLMN J. Laser Micro Nanoeng. 7(3), 326–333 (2012)
[68] Oh, J.H., Yang, S.J., Do, Y.G., Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance. Light Sci. Appl. 3, e141 (2014)
[69] Beckett, P.M., Fleming, A.R., Foster, R.J., Gilbert, J.M., Whitehead, D.G., The application of semiconductor diode lasers to the soldering of electronic components, Opt. Quant. Electron. 27(12), 1303–1311 (1995)
[70] Aitken, B.G., et al., Hermetically seal glass package and method of fabrication. US Patent 8148179 B2 (2013)
[71] Beckett, P.M., Fleming, A.R., Foster, R.J., Gilbert, J.M., Whitehead, D.G., The application of semiconductor diode lasers to the soldering of electronic components. Opt. Quant. Electron. 27(12), 1303–1311 (1995)
[72] Chen, T.H., Jian, B.L., Optical and electronic properties of Mo:ZnO thin films deposited using RF magnetron sputtering with different process parameters. Opt. Quantum Electron. 48, 77 (2016)
[73] Chen, T.H., Yang, C.L., The Mg doping GZO thin film for optical and electrical application by using RF magnetron sputtering. Opt. Quantum Electron. 48, 533 (2016)
[74] Chen, T.H., Jiang, B.L., Huang, C.T., The optical and electrical properties of MZO transparent conductive thin films on flexible substrate. Smart Sci. 5, 53–60 (2017)
[75] Cruz, Rui, et al., Glass–glass laser-assisted glass frit bonding. IEEE Trans. Compo. Packag. Manuf. Technol. 2(12), 1949–1956 (2012)
[76] Cvecek, K., Odato, R., Dehmel, S., Miyamoto, I., Schmidt, M., Gap bridging in joining of glass using ultra short laser pulses. Opt. Express 23(5), 5681–5693 (2015)
[77] Jiang, G., Zhou, D., Technology advances and challenges in hermetic packaging for implantable medical devices. In: Implantable Neural Prostheses 2, pp. 27–61. Springer, New York (2010)
[78] Kattamis, N.T., Purnick, P.E., Weiss, R., Arnold, C.B., Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl. Phys. Lett. 91, 171120 (2007)
[79] Kind, H., Gehlen, E., et al., Laser glass frit sealing for encapsulation of vacuum insulation. Phys. Proced. 56, 673–680 (2014)
[80] Knechtel, R., Wiemer, M., Fromel, J., Wafer level encapsulation of microsystems using glass frit bonding. Microsyst. Technol. 12(5), 468–472 (2006)
[81] Logunov, Stephan, et al., Laser assisted frit sealing for high thermal expansion glasses. JLMN J. Laser Micro Nanoeng. 7(3), 326–333 (2012)
[82] Malinauskas, M., Zˇ ukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., Juodkazis, S., Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5(8), e16133 (2016).
[83] Marinis, T.F., Soucy, J.W., Novel low temperature hermetic sealing of micropackages, ECTC, pp. 1552–1561 (2011).
[84] C. Y. Lin, Y. H. Shen, C. C. Huang, S. L. Tu, Laser sealing of organic light-emitting diode using low melting temperature glass frit, Opt Quant Electron (2017) 49:208.
[85] Ajiki, Reliability Engineering for Semiconductor Devices, Union of Japanese Scientists and Engineers, pp. 44-46.
[86] Ajiki, Reliability Engineering for Semiconductor Devices, Union of Japanese Scientists and Engineers,pp. 23-26.
[87] 王宗華,“可靠度工程技術手冊”,中華民國品質學會,2000。
[88] E.E. Lewis, Introduction to Reliability Engineering, John Wiley and Sons, pp. 84-86, 1996.
[89] Dana Crowe and Alec Feinberg, Design for Reliability, CRC Press, 2001.
[90] Wada, Improvement of design reliability for miniaturization process, National Technical Report, Vol. 36, No. 4, pp. 493-500 (1990).
[91] F. N. Sinnadurai, The accelerated aging of plastic encapsulated semiconductor devices in environments containing a high vapour pressure of water, Microelectronics and Reliability, Vol. 13, p. 23 (1974).
[92] Maeda et al., Property change in moisture resistance test, 16th JUSE Symposium on Reliability and Maintainability, p. 217 (1986).
[93] T. Murata, Y. Moriyama, K. Morinaga, Relationship between the local structure and spontaneous emission probability of Er3+ in silicate, borate, and phosphate glasses, Sci. Technol. Adv. Mat. 1 (2000) 139-145.
[94] S. G. Motke, S. P. Yawale, and S. S. Yawale, Infrared spectra of zinc doped lead borate glasses, B. Mat. Sci. 25 (2002) 75–78.
[95] B. K. Sharma and D. C. Dube, Preparation and characterization of V2O5-B2O3 glasses, J. Non-Cryst. Solids 65 (1984) 39–51.
[96] A. Abd El-Moneim, DTA and IR absorption spectra of vanadium tellurite glasses, Mater. Chem. Phys. 73 (2002) 318–322.
[97] R. A. Adams and R. W. Douglas, Infrared studies on various samples of fused silica with special reference to the bands due to water, Trans. Soc. Glass Technol. 43 (1959) 147–158.
[98] D. K. Kanchan, and H. R. Panchal, Infrared absorption study of potassium-boro-vanadate-iron glasses, Tr. J. of Physics 22 (1998) 989-996.
[99] S. Khan, G. Kaur, K. Singh, Effect of ZrO2 on dielectric, optical and structural properties of yttrium calcium borosilicate glasses, Ceram. Int. 43 (2017) 722-727.
[100] D. Sharma and R. Jha, Analysis of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals, Ceram. Int. 43 (2017) 8488-8496.
[101] D. K. Kanchan, H. R. Panchal and A. K. Gupta, Mossbauer studies in potassium boro-vanadate glass system, DAE Solid State Physics Symposium, Kochi, Kerala, India, 40C (1997) 241.
[102] M. Shapaan and F. M. Ebrahim, Structural and electric dielectric properties of B2O3-Bi2O3-Fe2O3 oxide glasses, Phys. B. 405 (2010) 3217–3222.
[103] B. N. Meera and J. Ramakrishna, Raman spectral studies of borate glasses, J. Non-Cryst. Solids 159 (1993) 1–21.
[104] S. Sen and A. Ghosh, Structure and other physical properties of magnesium vanadate glasses, J. Non-Cryst. Solids 258 (1999) 29-33.
[105] A. S. Rao, Y. N. Ahammed, R. R. Reddy, T. V. R. Rao, Spectroscopic studies of Nd3+-doped alkali fluoroborophosphate glasses, opt. mat. 10 (1998) 245-252.
[106] F.A. Santos, M.S. Figueiredo et. al., Influence of lattice modifier on the nonlinear refractive index of tellurite glass, Ceram. Int. 43 (2017) 15201-15204.
[107] M. M. Ahmed, C. A. Hogarth, M. N. Khan, A study of the electrical and optical properties of the GeO2-TeO2 glass system, J. Mater. Sci. Lett. 19 (1984) 4040-4044.
[108] T. R. Tasheva and V. V. Dimitrov, Electronic polarizability, optical basicity and chemical bonding of zinc oxide-barium oxide-vanadium oxide glasses, Bulgarian Chemical Communications 49 (2017) 76 – 83.
[109] V. Dimitrov and S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I, J. App. Phys. 79 (1996) 1736–1740.
[110] R. R. Reddy, Y. N. Ahammed, P. A. Azeem, K. R. Gopal, T. V. R. Rao, Electronic polarizability and optical basicity properties of oxide glasses through average electronegativity, J. Non-Cryst. Solids 286 (2001) 169-180.
[111] X. Zhao, X. Wang, H. Lin and Z. Wang, Correlation among electronic polarizability, optical Basicity and interaction parameter of Bismus Borate glasses. Phys. B. 390 (2007) 293-300.
[112] B. Bhatia, S. L. Meena, V. Parihar, M. Poonia, Optical basicity and polarizability of Nd3+-doped bismuth borate glasses, New Journal of Glass and Ceramics 5 (2015) 44-52.
[113] N. F. Mott, Electron in glass, J. Contemporary Physics, 18 (1977) 225-245.
[114] V. Dimitrov, Y. Dimitriev, and V. Mihailova, IR-spectral investigation of the structure of glasses in the Fe2O3-V2O5 system, Monatshefte fu ̈r Chemie 114(1983) 669– 674.
[115] J.A. Duffy, M.D. Ingram, An interpretation of glass chemistry in terms of the optical basicity concept. J. Non-Cryst. Solids 21 (1976) 373–410.
[116] J. Schroeder, Brillouin scattering and pockels coefficients in silicate glasses. J. Non-Cryst. Solids 40 (1980) 549-566.
[117] M. K. Halimah, M. F. Faznny, M. N. Azlan, H. A. A. Sidek, Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions, Results in Physics 7 (2017) 581-589.
[118] M. R. Sahar and A. S. Budi, Optical band gap and IR spectra of glasses in the system [Nd2O3](x)–[CuO](35−x)–[P2O5], Solid State Sci Technol, 14 (2006) 115-120.
[119] A. Klinokowski, Non-Monotonic Variations of some parameters in vitreous R2O-SiO2 and R2O-Al2O3-SiO2 Systems, J. Non-Cryst. Solids, 72 (1985) 117-137.
[120] R. Punia, R. S. Kundu, J. Hooda, S. Dhankhar, Sajjan Dahiya, and N. Kishore, Effect of Bi2O3 on structural, optical, and other physical properties of semiconducting zinc vanadate glasses, J. App. Phys. 110 (2011) 033527.
[121] M. Abdel Baki and F. El-Diasty, Oxyfluoroborate host glass for up conversion application: phonon energy calculation, Opt. Rev. 23 (2016) 284-289.
[122] G. Ramadevudu, et al., FTIR and optical absorption studies of new magnesium lead borate glasses, Global journal of science frontier research: physics and space science 12 (2012) 41-46.
[123] F. El-Diasty, F. A. Abdel Wahab, M. Abdel Baki, Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions, J. Appl. Phys. 100 (2006) 093511-093518.
[124] K. L. Chopra and S. K. Bahi, Exponential tail of the optical absorption edge of amorphous semiconductors, Thin solid films 11 (1972) 377-388.
[125] N. Ghobadi, Band gap determination using absorption spectrum fitting procedure, International Nano Letters 3 (2013) 2-4.
[126] V. Dimitrov and T. Komastu, Interionic interactions, electronic poarizability and optical basicity of oxide Glasses, J. Cer. Soc. Japan 108 (2000) 330-338.
[127] Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, and X. Shen, A study of nonlinear optical properties in Bi2O3-WO3-TeO2 glasses, J. Non-Cryst. Solids 354 (2008) 3468–3472.
[128] J. A. Duffy and M. D. Ingram, Optical basicity—IV: Influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses, J. Inorg. Nucl. Chem. 37 (1975) 1203-1206.
[129] I. Simon and H. O. McMohon, J. Chem. Phys. 20 (1952) 905
[130] V. Sadagopan and H. C. Gatos, Mater. Sci. Engng 2 (1967) 273.
[131] M. Rafiqul Ahsan, M Alfaz Uddin, and M Golam Mortuza, Infrared study of the effect of P2O5 in structure of lead silicate glasses, Indian journal of Pure & Applied Physics, vol 43 (2005) 89-99
[132] N S Vedeanu, I B Cozar, R Stanescu, R Stefan, D Vodnar and O Cozar, Structural investigation of V2O5–P2O5–K2O glass system with antibacterial potential, Bull. Mater. Sci., Vol. 39, No. 3 (2016) 697–702
[133] S. Logunov, S. Marjanovic, and J. Balakrishnan, Laser Assisted Frit Sealing for High Thermal Expansion Glasses, JLMN-Journal of Laser Micro/Nanoengineering Vol. 7, No. 3, 2012, pp. 326-333.
[134] Sugioka, K., Cheng, Y., Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl. 3(4), 149 (2014)
[135] 曾致堯, “高功率808nm雷射二極體封裝散熱能力改善之研究,”清華大學電子工程研究所學位論文, 2015, 32-61.
[136] Zhang, J., MacDonald, K., Zheludev, N., Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012)
[137] Malinauskas, M., Zˇ ukauskas, A., Hasegawa, S., Hayasaki, Y., Mizeikis, V., Buividas, R., Juodkazis, S., Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5(8), e16133 (2016).
[138] Csele, Mark. Fundamentals of Light Sources and Lasers, Wiley, 2004. ISBN 0-471-47660-9.
[139] Bertolotti, Mario, The History of the Laser, Institute of Physics, 1999, (trans. 2004). ISBN 0-7503-0911-3.
[140] Mark Fox. Optical Properties of solids. Oxford University Press, 2001.
[141] L. A. Coldren, S. W. Corzine, and M. L. MAˇSANOVI´C, Diode Lasers and Photonic Integrated Circuits, 2nd ed. Wiley, 2012.
[142] Svelto, Orazio, Principles of Lasers, 4th ed. Trans. David Hanna. Springer, 1998. ISBN 0-306-45748-2.
[143] 林佑龍, 高功率半導體雷射之功率效率與熱議題研究, 交通大學電子工程系所學位論文, 2012, 22-43.
[144] 呂助增, 雷射原理與應用, 聯經, 5-23.
[145] 王雲漢, IR與UV雷射應用於鉬薄膜刻劃性質之探討, 2012, 2-5
[146] B. G. Aitken, D. C. Bookbinder, M. E. Green and R. M. Morena, Non-lead sealing glasses, US Patent 5,246,890 (1993).
[147] J.J. Shyu and M.T. Chiang, Sintering and Phase Transformation in B2O3/P2O5- Doped Li2O•Al2O3•4SiO2 Glass-Ceramics, J. Am. Ceram. Soc., 83, pp. 635-39 (2000).
[148] UV photo-detection properties of pulsed laser deposited Cu-doped ZnO thin film Ceramics International Volume 43,Issue 5, pp. 4175–4182 (2017).
[149] Balbir S. Dhillon, Applied Reliability and Quality: Fundamentals, Methods and Procedures, Springer, 2007.
[150] Paul A. Tobias and David C. Trindade, Applied Reliability, Van Nostrand Reinhold, New York, 1995.
[151] K. C. Kapur and L. R. Lamberson, Reliability in Engineering Design, John Wiley and Sons, New York, 1977.
[152] E.E. Lewis, Introduction to Reliability Engineering, John Wiley and Sons, (1996) pp. 84-86.
[153] Alessandro Birolini, Reliability Engineering: Theory and Practice, Springer, (2007) pp. 307-312.
[154] Dana Crowe and Alec Feinberg, Design for Reliability, CRC Press (2001) pp. 8-4-8-7.
[155] C. R. Osterwald, and T. J. McMahon, History of Accelerated and Qualification Testing of Terrestrial Photovoltaic Modules: A Literature Review, Progress in photovoltaics: research and applications, 2009; 17:11–33
[156] M. Y. Tsai, C. H. Chen, and W. L. Tsai, Thermal Resistance and Reliability of High-Power LED Packages Under WHTOL and Thermal Shock Tests, IEEE transactions on components and packaging technologies, VOL. 33, NO. 4, pp. 738-746, 2010
[157] C. H. Chen, W. L. Tsai, C. Y. Tang and M. Y. Tsai, Thermal Reliability of Low-cost High-power LED Package Module Under WHTOL Test, Proceedings of IPACK2009. DOI: 10.1115/InterPACK2009-89337
[158] Steranka F M, Bhat J, “Collins D, et al., High power LEDs–Technology status and market applications, physica status solidi (a), 2002, vol. 194, pp. 380-388.
[159] Qin Z, Feng J, Zhaohui C, Effect of temperature and moisture on the luminescence properties of silicone filled with YAG phosphor, Journal of Semiconductors, 2011, vol. 32, pp. 012002.
[160] Tan C M, Chen B K E, Xiong M, Study of humidity reliability of high power LEDs; proceedings of the Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference, 2010.
[161] C. Hang, J. M. Fei, Y. H. Tian, W. Zhang, C. Q. Wang, The effects of humidity and temperature aging test on flexible packaging LED module, 14th International Conference on Electronic Packaging Technology (2013) pp. 1126-1129.
[162] J. Sergent and A. Krum, ‘Thermal Management Handbook for Electronic Assemblies, McGraw-Hill, 1998
[163] JEDEC Standard Test Method A101-B, Steady State Temperature Humidity Bias Life Test, 1997.
[164] M. Arik, C. Becker, S. Weaver, and J. Petroski, Thermal Management of LEDs: Package to System, Proc. of SPIE, 2004.
[165] Power Semiconductor Reliability Handbook, Alpha and Omega Semiconductor, Rev. 1.0, 5/20/10, www.aosmd.com.
[166] CREE, CREE XLamp XP Family & 4550 LED Reliability. www.cree.com/xlamp.
[167] JEDEC Standard, JESD91A, Methods for Developing Acceleration Models for Electronic Component Failure Mechanisms, Electronic Industries Association, 2003.
[168] Y. Zhang, D. Das, A. Katz, M. Pecht, and Ö. Hallberg, Trends in Components Reliability and Testing, Semiconductor International, Vol. 22, No. 10, 1999, pp. 101-106.
[169] E. Jung and H. Kim, Rapid optical degradation of GaN-based light emitting diodes by a current-crowding-induced self-accelerating thermal process, IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 825–830, Mar. 2014.
[170] C. H. Simpson, C. J. Ray, and B. S. Skerry, Accelerated Corrosion Testing of Industrial Maintenance Paints Using A Cyclic Corrosion Weathering Method, Journal of protective coatings and linings, May (1991) 1-9.
[171] R. Schlegel, Reliability and testing, ABB semiconductor AG, section 4, S 4-1-S 4-16.
[172] A Short Guide to Quality and Reliability Issues In Semiconductors For High Rel. Applications, SemeLab, Issue 1.0 Jan 2002, 4-11
[173] P. Plathner and Ch. Jung, Overview of LED standards related to lifetime and reliability testing, OSRAM, April 2017, 1-36 http://www.aecouncil.com/W.3a_Overview_of_LED-Related_Standards.pdf.
[174] V. Lakshminarayanan, Environmental-stress screening improves electronic-design reliability, designfeature, September 2001, 73-84.
[175] D. A. Weirauch, Mechanical and Environmental Tests of Brazed Ceramic Multilayer Packages, Welding research supplement, May 1994, 110-118.