簡易檢索 / 詳目顯示

研究生: 洪士豪
Hung, Shin-Hao
論文名稱: 使用摻銩飽和吸收光纖的全光纖被動式Q切換鉺雷射
Passively Q-switched erbium all-fiber lasers by use of thulium doped saturable-absorber fibers
指導教授: 蔡宗祐
Tsai, Tzong-Yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 69
中文關鍵詞: Q切換脈衝雷射全光纖被動式
外文關鍵詞: Q-switch, pulse laser, all fiber, passively
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用摻銩光纖作為飽和吸收材料來完成波長1570 nm的全光纖被動式Q切換鉺脈衝雷射。並根據bleaching實驗測量得到摻銩光纖在1570 nm 的absorption cross section為1.4410-20 cm2。此系統產生脈衝能量為9 μJ的連續脈衝,脈衝寬度約為420 ns,並穩定操作在0.1到3 kHz,重複率標準差相對為4到188 Hz。在長時間的操作下,暗光子造成系統的衰減約為12%。在980-nm LD最大激發功率約為230 mW時,脈衝的重複率可達到6 kHz。

    We demonstrate all-fiber passively Q-switched erbium lasers at 1570 nm using Tm3+-doped saturable-absorber fibers. The absorption cross section of a Tm3+-doped fiber at 1570 nm was measured in a bleaching experiment to be about 1.4410-20 cm2. With a thulium-doped fiber, sequential pulses with a pulse energy of 9J and a pulse duration of about 420 ns were stably produced at repetition rates in the range 0.1 to 3 kHz. The corresponding deviation of the repetition-rate stability was 4 to 188Hz. The loss caused by photo-darkening was about 12% after a long time operation. The maximum pulse repetition rate was 6 kHz, limited by the maximum pump power of a 980- nm laser diode, about 230 mW.

    第1章 緒論...............................................................................................1 1-1前言......................................................................................................1 1-2研究動機..............................................................................................3 1-3論文架構..............................................................................................5 第2章 原理...............................................................................................6 2-1增益與SAQS光纖能階......................................................................6 2-2 Q切換雷射公式與模擬條件..............................................................8 2-3 Bleach推導........................................................................................12 第3章實驗設計與模擬...........................................................................13 3-1駐波型被動式Q切換.......................................................................13 3-2環型被動式Q切換...........................................................................17 3-2 Bleach實驗........................................................................................20 3-3-1 Bleach實驗架構.............................................................................20 3-3-2 Bleach實驗模擬流程.....................................................................21 3-4全光纖被動式Q切換雷射的穩定度...............................................23 第4章 實驗數據討論與改良.................................................................25 4-1 駐波型被動式銩Q切換鉺雷射.......................................................25 4-1-1 駐波型被動式銩Q切換鉺雷射結果...........................................25 4-1-2 駐波型被動式銩Q切換鉺雷射長時間操作...............................38 4-2 環型被動式銩Q切換鉺雷射結果...................................................39 4-3 銩Q切換鉺雷射系統改良...............................................................42 4-4 Bleach................................................................................................45 4-4-1 Bleach實驗......................................................................................45 4-4-2 Bleach實驗模擬..............................................................................48 4-5銩在Q切換雷射系統的穩定度........................................................51 第5章 結論.............................................................................................54 5-1實驗結果討論....................................................................................54 5-2未來展望............................................................................................55 參考文獻...................................................................................................56 附錄A.......................................................................................................60 附錄B.......................................................................................................67

    1. N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Commun. 210, 361-366 (2002).
    2. D. W. Huang, W. F. Liu and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photonics Technol. Lett. 12, 1153-1155 (2000).
    3. M. Delgado-Pinar , D. Zalvidea, A. Díez, P. Pérez-Millán and M. V. Andrés, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106 (2006).
    4. P. Pérez-Millán, A. Díez, M. V. Andrés, D. Zalvidea, and R. Duchowicz, "Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating," Opt. Express 13, 5046-5051 (2005).
    5. R. Paschotta, R. H¨aring, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 mm,” Opt. Lett. 24, 388-390 (1999).
    6. S. Kivistö, R. Koskinen, J. Paajaste, S. D. Jackson, M. Guina, and O. G. Okhotnikov, "Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression," Opt. Express 16, 22058-22063 (2008).
    7. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, "Yb–Bi pulsed fiber lasers," Opt. Lett. 32, 451-453 (2007).
    8. A. A. Fotiadi, A. S. Kurkov and I. M. Razdobreev, “All-fiber passively Q-switched Ytterbium laser,” 2005 Conference on Lasers and Electro-Optics Europe, p. 515.
    9. P. Adel, M. Auerbach, C. Fallnich, S. Unger, H.-R. Müller and J. Kirchhof, "Passive Q-switching by Tm3+ co-doping of a Yb3+ fiber laser," Opt. Express 11, 2730-2735 (2008).
    10. A.S. Kurkov, E.M. Sholokhov and O.I. Medvedkov, "All fiber Yb-Ho pulsed laser," Laser Phys. Lett. 6, 2, 135–138 (2009).
    11. S. D. Jackson, "Passively Q-switched Tm3+-doped silica fiber lasers," Appl. Opt. 46, 16, 3311-3317 (2007).
    12. T. -Y. Tsai and Y. -C. Fang, "A saturable absorber Q-switched all-fiber ring laser," Opt. Express 17, 1429–1434 (2009).
    13. T. -Y. Tsai, Y. -C. Fang, Z. -C. Lee and H. -X. Tsao, "All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch," Opt. Lett. 34, 19, 2891-2893 (2009).
    14. S. D. Agger and J. H. Povlsen, "Emission and absorption cross section of thulium doped silica fibers," Opt. Express 14, 1, 50-57 (2006).
    15. K. Annapurna, M. Das, S. Buddhudu, "Spectral analysis of thulium doped zinc-boro-silicate glass," Physica B 388, 174-179 (2007).
    16. V.G. Shcherbitsky, S. Girard, M. Fromager, R. Moncorg´e, N.V. Kuleshov, V.I. Levchenko, V.N. Yakimovich, B. Ferrand, "Accurate method for the measurement of absorption cross sections of solid-state saturable absorbers," Appl. Phys. B 74, 367-374 (2002)
    17. D. A. Simpson, “Spectroscopy of Thulium Doped Silica Glass,” (Victoria University, Melbourne, 2008)
    18. M. M. Broer, D. M. Krol, and D. J. DiGiovanni “Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber” OSA. O.L. , Vol 18, No. 10(1993)
    19. V.G. Shcherbitsky, S. Girard, M. Fromager, R. Moncorg´e, N.V. Kuleshov, V.I. Levchenko, V.N. Yakimovich, B. Ferrand, "Accurate method for the measurement of absorption cross sections of solid-state saturable absorbers" Appl. Phys. B 74, 367-374 (2002)
    20. Søren Agger and Jørn Hedegaard Povlsen “Single-frequency thulium-doped distributed-feedback fiber laser” OSA. O.L. , Vol. 29, No. 13 (2004)

    下載圖示 校內:2015-07-19公開
    校外:2015-07-19公開
    QR CODE