簡易檢索 / 詳目顯示

研究生: 洪愷憶
Hung, Kai-Yi
論文名稱: 以表面增顯紅外光譜儀探討不同硫醇及胺基分子在金表面上自組裝行為之研究
The Study of Self-Assembled Behaviors of Thiol and Amine Molecules on Gold Surface by Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS)
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 88
中文關鍵詞: 硫醇自組裝單分子膜表面增顯紅外光譜儀
外文關鍵詞: Thiol, Amine, Self-assembled monolayer, Surface-Enhanced Infrared Spectroscopy
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用表面增顯紅外線光譜儀(SEIRAS)結合循環伏安儀(CV),以即時測定的方式記錄在過氯酸水溶液中,硫醇及胺基分子於多晶金表面上的吸附行為,同時探討不同頭基及尾基對分子吸附特性的差異。在SEIRAS光譜上的分析,主要是利用分子碳鏈上亞甲基(-CH2-)於波數2800 ~ 3000 cm-1振動帶範圍內的訊號強度來判定吸附量的多寡以及分子的吸附位向。實驗結果顯示,金電極表面在施加偏正電位時(-0.1 V vs. Pt)比在開路電位狀態下(OCP:-0.6 V vs. Pt)能具有較高的硫醇分子吸附量,而胺基分子的吸附量則無顯著的差異,但在OCP狀態下比在正電位時更容易有存在於溶液中的質子化胺基分子接近電極周圍,排開較多的表面水分子而影響波數3400 ~ 3600 cm-1範圍的訊號強度。
    依據SEIRAS的表面選擇規則,在金屬/溶液的界面中,偶極矩的變化必須垂直於表面,才具備SEIRAS放大訊號的功效,在此即當吸附的分子碳鏈越靠近於表面時,亞甲基振動帶出現的特徵峰強度越強,反之當碳鏈越遠離時則強度越弱。因此由實驗結果可知,當分子之尾端為硫醇官能基時,因硫醇與金表面具有較強之吸引力,分子會以近乎平躺之位向於表面;當尾端為較疏水性的甲基時,分子在表面呈現傾斜;而當尾端為具親水性的羥基時,分子則在表面有接近直立的吸附位向。

    A surface-enhanced infrared spectroscopy (SEIRAS) combined with cyclic voltammetry (CV) was utilized to study the adsorption behaviors of thiol and amine molecules on the surface of polycrystalline gold in an aqueous solution of perchloric acid (HClO4) and the differences in molecular adsorption caused by different head and terminal groups. It is mainly analyzed by the signal intensity of the methylene group (-CH2-) on the molecular carbon chain in the vibration band of the wave number range of 2800 ~ 3000 cm-1 to determine the amount of adsorption and the adsorption orientation of the molecule.
    The experimental results show that the gold electrode surface have a higher molecular adsorption amount of thiol when the positive potential is applied (-0.1 V vs. Pt) than the open circuit potential (OCP: -0.6 V vs. Pt), but for amine is no significant difference. However, the protonated amine molecules present in the solution are easier to near the electrode at OCP state than at positive potential, so more surface water molecules are repelled to affect the signal strength in the wave number range of 3400 ~ 3600 cm-1.
    According to the surface selection rule of SEIRAS, in the metal/solution interface, the dipole moment must be perpendicular to the surface to have the effect of amplification signal, where the carbon chain of molecule adsorbed is closer to the surface, the characteristic peak (C-H) intensity is stronger, but is weaker when the carbon chain is farther away. Therefore, it can be seen from the experimental results that when the terminal group is thiol making the molecule lie on the surface, is hydrophobic methyl group making the molecule tilt on the surface and is hydrophilic hydroxyl group making the molecule stand on the surface.

    摘要 I Extended Abstract II 誌謝 IX 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1前言 1 1.2研究動機 3 第二章 文獻回顧 4 2.1自組裝單分子膜(Self-assembled monolayers, SAMs) 4 2.1.1自組裝單分子膜系統的發展起源 4 2.1.2自組裝現象及分子特性 5 2.1.3自組裝單分子膜系統的分類 6 2.1.4自組裝分子薄膜的應用 8 2.2烷基硫醇(Alkylthiols)於金表面的自組裝行為 10 2.2.1烷基硫醇分子之介紹 10 2.2.2 尾基於長碳鏈烷基硫醇自組裝行為之影響 11 2.3烷基胺(Alkylamines)於金表面的自組裝行為 19 2.3.1烷基胺分子之介紹 19 2.3.2長碳鏈烷基胺自組裝行為 20 第三章 實驗部分 29 3.1藥品及耗材 29 3.2儀器設備 31 3.2.1循環伏安儀(Cyclic Voltammogram, CV) 31 3.2.2表面增顯紅外光譜儀(Surface-Enhanced Infrared Absorption Spectroscopy, SEIRAS) 34 3.3實驗步驟 40 3.3.1表面增顯紅外光譜儀電極製備 40 3.3.2表面增顯紅外光譜儀之操作 41 第四章 結果與討論 43 4.1多晶金電極於酸性環境中之特性 43 4.1.1循環伏安圖 43 4.1.2表面增顯紅外光譜 45 4.2烷基硫醇分子於多晶金表面之自組裝行為 48 4.2.1循環伏安圖 48 4.2.2表面增顯紅外光譜 50 4.2.2.1 十二碳鏈烷基硫醇於多晶金表面之自組裝行為 50 4.2.2.2九碳雙硫醇於多晶金表面之自組裝行為 54 4.2.2.3十一碳羥基硫醇於多晶金表面之自組裝行為 58 4.2.2.4長碳鏈硫醇之尾基於吸附位向的影響 62 4.3烷基胺分子於多晶金表面之自組裝行為 65 4.3.1循環伏安圖 65 4.3.2表面增顯紅外光譜 67 4.3.2.1十二碳烷基胺於多晶金表面之自組裝行為 67 4.3.2.2十碳羥基胺於多晶金表面之自組裝行為 71 4.3.2.3長碳鏈胺分子之尾基於吸附位向的影響 75 4.3.2.4高濃度烷基胺分子之影響 78 4.4長碳鏈分子之頭基於自組裝行為之影響 81 第五章 結論 84 第六章 參考文獻 86

    [1] W. C. Bigelow, D. L. Pickett, W. A. Zisman, "Oleophobic Monolayers : I. Films Adsorbed From Solution in Non-polar Liquids", Journal of Colloid Science, 1, 513, 1946.
    [2] R.G. Nuzzo, D.L. Allara, "Adsorption of Bifunctional Organic Disulfides on Gold Surfaces", Journal of the American Chemical Society, 105, 4481, 1983.
    [3] A. Ulman, "Formation and Structure of Self-Assembled Monolayers", Journal of American Chemical Society, 96, 1533, 1996.
    [4] H. Sellers, A. Ulman, Y. Shnidman, J.E. Eilers, "Structure and Binding of Alkanethiolates on Gold and Silver Surfaces: Implications for Self-Assembled Monolayers", Journal of the American Chemical Society, 115, 9389, 1993.
    [5] J. C. Love, L. A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology", Journal of American Chemical Society, 105, 1103, 2005.
    [6] Y. Xia, X.M. Zhao, G.M. Whitesides, "Pattern Transfer: Self-Assembled Monolayers as Ultrathin Resists", Microelectronic Engineering, 32, 255, 1996.
    [7] C. Cotton, A. Glidle, G. Beamson, J.M. Cooper, "Dynamics of the Formation of Mixed Alkanethiol Monolayers: Applications in Structuring Biointerfacial Arrangements", Langmuir, 14, 5139, 1998.
    [8] I. Taniguchi, K. Toyosawa, H. Yamaguchi, K. Yasukouchi, "Reversible Electrochemical Reduction and Oxidation of Cytochrome c at a Bis(4-pyridyl) Disulphide-modified Gold Electrode", Journal of the Chemical Socciety, Chemical Communications, 1032, 1982.
    [9] J. Y. Huang, D. A. Dahlgren, J. C. Hemminger, "Photopatterning of Self-Assembled Alkanethiolate Monolayers on Gold: A Simple Monolayer Photoresist Utilizing Aqueous Chemistry", Langmuir, 10, 626, 1994.
    [10] X. M. Li, J. Huskens, D.N. Reinhoudt, "Reactive Self-Assembled Monolayers on Flat and Nanoparticle Surfaces, and Their Application in Soft and Scanning Probe Lithographic Nanofabrication Technologies", Journal of Materials Chemistry, 14, 2954, 2004.
    [11] S. S. Li, Xu, L. P. Wan, L. J. Wan, S. T. Wang, L. Jiang, "Time-Dependent Organization and Wettability of Decanethiol Self-Assembled Monolayer on Au(111) Investigated with STM", Journal of Physical Chemistry B, 110, 1794, 2006.
    [12] Y. C. Yang, T. Y. Chang, Y. L. Lee, "Adsorption Behavior of 11-Mercapto-1-undecanol on Au(111) Electrode in an Electrochemical System", Journal of Physical Chemistry C, 111, 4014, 2007.
    [13] Y. F. Liu, L. H. Chen, M. Yoshimura, S. L. Yau, Y. L. Lee, "Potential-Induced Adsorption Behavior of Carboxyl-Terminated Alkanethiol on Au(111) Surfaces", Journal of Physical Chemistry C, 118, 989, 2014.
    [14] A. M. Luque, A. Cuesta, J. J. Calvente, R. Andreu, "Potentiostatic Infrared Titration of 11-Mercaptoundecanoic Acid Monolayers", Electrochemistry Communications, 45, 13, 2014.
    [15] D. L. Allara, J. D. Swallen, "An Infrared Reflection Spectroscopy Study of Oriented Cadmium Arachidate Monolayer Films on Evaporated Silver", Journal of Physical Chemistry, 86, 2700, 1982.
    [16] L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, "Single-Molecule Circuits with Well-Defined Molecular Conductance", Nano Letters, 6, 458, 2006.
    [17] E. de la Llave, R. Clarenc, D. J. Schiffrin, and F. J. Williams, "Organization of Alkane Amines on a Gold Surface: Structure, Surface Dipole, and Electron Transfer", Journal of Physical Chemistry C, 118, 468, 2014.
    [18] C. D. Bain and G. M. Whitesides, "Attenuation Lengths of Photoelectrons in Hydrocarbon Films", Journal of Physical Chemistry, 93, 1670, 1989.
    [19]王振擇, "烷基胺分子於Au(111)電極上之自組裝行為及其單分子膜電化學特性分析", 化學工程學系, 成功大學, 2015.
    [20] M. Osawa, "Surface-Enhanced Infrared Absorption", Topics in Applied Physics, 81, 163, 2001.
    [21] A. Bewick, K. Kunimatsu, B. S. Pons, J. W. Russell, "Electrochemically Modulated Infrared Spectroscopy(EMIRS)", Journal of Electroanalytical Chemistry, 160, 47, 1984.
    [22] S. Pons, T. Davidson, "Vibrational Spectroscopy Of The Electrode-Electrolyte Interface Part IV. Fourier Transform Infrared Spectroscopy: Experimental Considerations", Journal of Electroanalytical Chemistry, 160, 63, 1984.
    [23] T. I. S. Ye, K. Uosaki, "Spectroscopic Studies on Electroless Deposition of Copper on a Hydrogen-Terminated Si(111) Surface in Fluoride Solutions", Journal of Electroanalytical Chemistry, 148, C421, 2001.
    [24] H. Miyake, S. Ye, M. Osawa, "Electroless Deposition of Gold Thin Films on Silicon for Surface-Enhanced Infrared Spectroelectrochemistry", Electrochemistry Communications, 4, 973, 2002.
    [25] M. Osawa, K. Ataka, K. Yoshii, T. Yotsuyanagi, "Surface-Enhanced Infrared ATR Spectroscopy for In Situ Studies of Electrode/Electrolyte Enterfaces", Journal of Electron Spectroscopy and Related Phenomena, 64/65, 371, 1993.
    [26] M. Osawa, K. Ataka, K. Yoshii, T. Yotsuyanagi, Y.Nishikawa, "Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles", Applied Spectroscopy, 47, 1497, 1993.
    [27] J. C. Vickerman, "Surface Analysis-The Principle Techniques", John Wiley & Sons, 278, 1997.
    [28] L. A. Nagahara, T. Ohmori, K. Hashimoto, A. Fujishima, "Effects of HF Solution In The Electroless Deposition Process On Silicon Surfaces", Journal of Vacuum Science and Technology, 11, 763, 1993.
    [29] H. Angerstein-Kozlowska, B. E. Conway, "Elementary Steps of Electrochemical Oxidation of Single-Crystal Planes of Au - I. Chemical Basis of Processes Involving Geometry of Anions and the Electrode Surfaces", Electrochimica Acta, 31, 1051, 1986.
    [30] N. Garcia-Araez, P. Rodriguez, H. J. Bakker, M. T. M. Koper, "Effect of The Surface Structure of Gold Electrodes on the Coadsorption of Water and Anions", Journal of Physical Chemistry C, 116, 4786, 2012.
    [31] K. I. Ataka, T. Yotsuyanagi, M. Osawa, "Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy", Journal of Physical Chemistry, 100, 10664, 1996.
    [32]黃振瑋, "以表面增顯紅外吸收光譜儀探討烷基胺分子在金電極表面上之自組裝行為及其單分子膜電化學特性", 化學工程學系, 成功大學, 2016.

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE