| 研究生: |
曾依蕾 Tzeng, Yi-Lei |
|---|---|
| 論文名稱: |
柴油降解菌組合的最佳化 Optimization of Diesel-degrading Bacterial Consortium |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 生物復育 、菌株 、柴油 |
| 外文關鍵詞: | diesel, strain, bioremediation |
| 相關次數: | 點閱:77 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來台灣土壤及地下水受油品污染日益嚴重,污染案例不勝枚舉,如桃園縣大溪鎮仁和里加油站油污染案、金門縣軍方輸油管破裂柴油外洩污染農田案等。油品污染一般污染途徑以地下儲油槽(Underground Storage Tanks, USTs)受腐蝕而破裂產生漏油、油管破裂、地面油品意外洩漏及廢油品任意傾倒或掩埋等。而油品污染物因洩漏進入土壤或地下水中將嚴重影響環境。以柴油污染為例,柴油主要為脂肪族及芳香族化合水性有機化合物。以往的油品污染以物化處理較多,但易造成二次污染因污染物仍停留於土壤中,且耗費金錢是其缺點。
此本研究由台灣幾處污染場址中,選出幾種優勢菌株作為試驗。再模擬現場使操作條件盡量接近實場狀況。以液態且好氧狀況的單純條件下,研究最適生物降解碳氫化合物的條件,試驗這四種菌株Gordonia nitia (JG39)、Comamonas testosteroni (CF3)、Serratia marcescens (CH-1)、Pseudomonas aeruginosa (RS1)的柴油降解效力,再以分生工具去監測菌種的變化。
得到結果歸納為下:1.單一純菌(RS1、JG39、CH-1、CF3)的比生長率數值為 0.032-0.128 hr-1,本實驗測試的四種菌株1000-2400 mg/L。2.在連續72小時內柴降解試驗結果為JG39(96%) >CF3(94%) >CH-1(85%)>RS1(76%),在72小時後柴油已可經生物降解,將約8000 mg/L降至500 mg/L~2000 mg/L。然而值得注意的是,72小時後柴油降解效果最佳的菌株JG39,在前24小時內降解效果反而是四株菌株中將解效果最差的。3.JG39菌株添加入原生菌中,比其他種組合生物量來的高,高達2300 mg/L。4.在72小時的培養,柴油降解百分比為〔原生菌+ CF3〕(100%)>〔原生菌+ JG39〕(94%) =〔原生菌+ 四種菌株〕(94%)>〔原生菌+ CH-1〕(69%) >〔原生菌+ RS1〕(67%),得到原生菌中CF3菌株的添加與JG39的添加對降解柴油碳氫化合物效果很好,皆高於90%以上。得到結果是添加CF3與JG39於原生菌中,對柴油的降解效果,與四隻純菌同時添加於原生菌中無多大的差異,皆高達90%的柴油降解量。5.以液態半批次操作反應瓶培養,將四種菌株JG39、RS1、CH-1、CF3添加入原生菌中,時間長達約三個月,實驗以每三天添加柴油濃度為8000 mg/L操作及BH營養鹽操作,反應瓶的水力停留時間為4天或6天。35℃反應瓶內菌液生物濃度約為1000~3200 mg/L;20℃反應瓶內菌液生物濃度約為600~2800 mg/L。在30天的監測中得到柴油殘留量都低於10%,証明液相培養中的菌種與菌量。以傳統生物技術與分子生物技術探討反應瓶柴油降解菌變化,得到在35℃下CH-1菌種被淘汰,而20℃下CH-1菌種則存活;另一為從柴油降解量來做比較,CH-1菌種被淘汰並無明顯影響到柴油的降解量,也意味著CH-1的添加並非柴油降解中決定性的菌株。
Contamination caused by petroleum hydrocarbon has caused critical environmental and health effects. During accidental spills, actions can be taken to immediately remove the pollutants and recover the contaminated site, but in areas located with storage tanks, the spills due to leakage may be small but continuous and prolonged (Rahman, et al., 2002). The most popular technologies up to date include physical techniques, chemical techniques, and bioremediation such as bioaugmentation. Bioaugmentation such as the reintroduction of enriched indigenous microorganisms isolated from contaminated sites found helpful to overcome the problem of toxicity, which reduces efficiency of biodegradation (Mishira, et al., 2001).
The study of diesel-degrading bacterial consortium was used several bacterial strains, Gordinia alkanvorans (JG39), Comamonas testosterone (CF3), Serratia marcescens (CH-1), Pseudomonas aeruginosa (RS1) isolated from different contaminated sites. In the single-strain diesel degradation test, the specific growth rates μ of single-strain(RS1、JG39、CH-1、CF3) were between 0.032-0.128 hr-1, when the microbial concentrate was 1000-2400 mg/L. After 72 hour, the diesel-degrading percentage was JG39(96%) >CF3(94%) >CH-1(85%)>RS1(76%). The microorganism can degrade diesel from 8000 to 500~2000 mg/L.
In the addition of diesel-degrading isolates to indigenous bacteria test, the highest microbial concentration of the consortium with the addition JG39 achieved 2300 mg/L, more than any other consortium in the test. After 72 hour, the diesel degradation was 〔M+ CF3〕(100%)>〔M+ JG39〕(94%) =〔M+ 4 strain〕(94%)>〔M+ CH-1〕(69%) >〔M+ RS1〕(67%). The diesel degradation of the consortium with the addition of CF3 or JG39 achieved more than 90 %, which was more than any other consortium. RS1 attained the highest Qmax1/X(0.46 TPHd mg/VSS mg.h )among all of the bacterial consortium.
In the population dynamic of diesel-degrading bacterial in the long-term test, the semi-batch cultivation was conducted in the flasks at 20 & 35℃. The microbial concentration at 35℃ was 1000~3200 mg/L with the average of 2200 mg/L. The microbial concentration at 20℃ was 600~2800 mg/L with the average of 1800 mg/L. Within a month, the remaining diesel was lower than 20%. It means the bacteria amount was sufficient in completely degrading the diesel in the flasks. After the 3-month diesel cultivation, CF3 and JG39 were both survived at 20℃ and 35℃. However CH-1 was only survived at 20℃ but disappeared at 35℃.
王一雄。1997。土壤環境汙染與農藥。明文書局股份有限公司。
化學事故技術援助數據系統。上海市化工職業病防治院出版,v1.0。http://www.chemaid.com/hjt.htm。
中國石油公司訓練所。1996。石油產品及其應用(上、下冊)。蘭潭彩色印刷股份有限公司。
林財富。2003。工廠土壤及地下水污染整治技術手冊。經濟部。
陳啟祥。1997。受污染場址生物整治技術與評估。第五屆土壤污染防治研討會論文集 pp.1-17。
徐明達。2004。細菌的世界。天下雜誌。
民國九十年全國調查資料。土壤及地下水污染整治網。http://ww2.epa.gov.tw/SoilGW/index.asp。
楊秋忠,環保菌種助劑之奈米分子優化技術。經濟部學界科專計畫與第一年度技術報告,2003.”分子生物技術於環境工程應用研究三年計畫”。
ATSDR web, 2005 Http://www.atsdr.cdc.gov/
Anderson MS, Hall RA and Grffin M (1980) Microbial metabolism of alicyclic hydrocarbons: cyclohexane catabolism by a pure strain of Pseudomonas sp. J. Gen. Microbiol. 120:89-94
Antoniewski, J., and R. Schaefer. 1972. Researches sur les reactions des coenoses microbiennes de sols impregnes par des hydrocarbons. Modification de l’activite respiratoire. Ann. Inst. Pasteur 123 : 805-819
APHA. American Public Health Association. http://www.apha.org/.
Atlas, R. M., and R. Bartha. 1972. Degradation and mineralization of petroleum by two bacteria isolated from coastal waters. Biotech. Bioeng. 14;297-308
Atlas, R. M., A. Horowitz, and M. Busdosh. 1978. Prudhoe crude oil in Arctic marine ice, water and sediment ecosystems; degradation and interactions with microbial and benthic communities. J. Fish Res. Board. Can. 35:585-590
Atlas, R. M., 1981. Microbial degradation of petroleum hydrocarbon: An environmental perspective. Microbiol. Rev. 45, 180-209.
Austin, B., J. J. Caloniris, J. D. Walker, and R. R. Colwell. 1977. Numerical taxonomy and rcology of petroleum-degrading bacteria. Appl. Environ. Microbiol. 34:60-68.
Austin, B., R. R. Colwell, J. D. Walker, and R. R. Colwell. 1977. The application of numerical taxonomy to the study of petroleum degrading bacteria isolated from the aquatic environment. Dev. Indust. Microbiol. 18:685-695.
Azoulay E, Choteau J and Davidovics G (1963) Isolement et characterization des enezymes responsables de 1,oxidation des hydrocarbures. Biochim. Biophys. Acta 77: 554-567.
Baggi G, Barbieri P, Galli E and Tollari S (1987) Isolation of a Pseudomonas ststzeri strain that degrades o-xylene. Appl. Environ. Microbiol. 53: 2129-2132.
Balba, M.T., Al-Daher, R., Al-Awadhi, N., 1998. Bioremediation of oil-contaminated soil in Kuwait. Environ. Int. 24 (1), 163-173.
Bartha, R., and R. M. Atlas. 1977. The microbiology of aquatic oil spills. Adv. Appl. Microbiol. 22:225-266.
Bauer, J.E., Capone, D.G., 1985. Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments. Appl. Environ. Microbiol. 50, 81-90.
Bayona JM, Albaiges J, Solanas AM, Pares R, Garrigues P and Ewald M (1986) Selsctive aerobic degradation of methyl-substituted polycyclic hydrocarbons in petroleum by pure microbial cultures. Int. J. Environ. Anal. Chem. 23: 289-303
Beam HW and Perry JJ (1974b) Microbial degradation and assimilation of n-alkyl-substituted cycloparaffins. J. Bacteriol. 118: 394-399
Bertrand, J. C., J. M. Doux, and E. Azoulay. 1976. Metabolisme des hydrobarbures chez une bacterie marine. Biochemie 58 :843-854.
Bestetti G and Galli E (1987) Characterization of a novel TOL-like plasmid from Pseudomonas putida involved in 1,2,4-trimethylbenzene degradation. Appl. Environ. Microbiol. 169:1780-1783
Bestetti G and Galli E, Benigini C, Orsini F and Pelizzoni F (1989) Biotransformation of styrenes by a Pseudomonas putida. Appl. Microbiol. Biotechnol. 30:252-256
Biegert, T., Fuchs, G. and Heider, J. (1996) Evidence that oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur. J. Biochem. 238, 661-668
Britton LN (1984) Microbial degradation of ailphatic hydrocarbon. IN: DT Giboson (ed) Microbial Degradation of Orange Compounds (pp89-129). Marcel Dekker, New York
Brune G, Schoberth SM and Sahm H (1983) Growth of a strictly anaerobic bacterium on furfural (2-furaldehyde). Appl.Environ. Microbiol. 46: 1187-1192
Buckley, E. N., R. B. Jones, and F. F. Pfaender. 1976. Characterization of microbial isolates from an estuarine ecosystem; relationship of hydrocarbon utilization to ambient hydrocarbon concentration. Appl. Environ. Microbiol. 32:232-237.
Bushnell,L.D.and H.F.Hass,1941.The utilization of certain hydrocarbons by microorganisms.J.Bacteriol.,41:653-673
C. Kummer et al.,1999,Gordonia alkanivorans sp. nov.,Journal of Systematic Bacteriology International of Systematic Bacteriology,49,1513-1522
Cameotra SS and Singh HD (1990) Uptake of volatile n-alkane by Pseudomonas PG-1. J.Biosci. 15:313-322
Cook, W. L., J. K. Massey, and D. G. Ahearn. 1973. The degradation of crude oil by yeasts and its effects on Lebistes reticulates p. 282-297. In Ahearn, D. G., and S. P. Meyers (ed.), The microbial degradation of oil pollutants. Publication No. LSU-SG-73-01. Baton Rouge, Louisiana.
Cooper,D.G,and B.G.Goldenberg,1987.Surface active agents from two Bacillus species. Appl.Environ.Microbiol.55:224-229………………….乳化指數
Cormack, W.P. Mac and E.R. Fraile (1997) Characterization of a hydrocarbon degrading psychrotrophic Antarctic bacterium. Antartic Science 9 (2):150-155
Cox RE, Maxwell JR and Myers RN (1976) Monocarboxylic acids from oxidation of acyalic isoprenoid alkanes by Mycobacterium fortuitum. Lipids 11: 72-76
Cundell, A. M., and R. W. Traxler. 1973. The isolation and characterization of hydrocarbon utilizing bacteria from Chedabucto Bay, Nova Scotia, p. 421-426. In: Proceedings of Joint Conference on Prevention and Control of Oil Spill. American Petroleum Institute, Washington D.C.
Cundell, A. M., and R. W. Traxler. 1973. Microbial degradation of petroleum at low temperature. Mar. Poll. Bull. 4:125-127.
Cundell, A. M., and R. W. Traxler. 1976. Psychrophillic hydrocarbon degrading bacteria from Narragansett Bay, Rhode Island, U.S.A. Mater, Org. 11:1-17.
Davey JF and Gibson DT (1974) Bacterial metabolism of p- and m-xylene: oxidation of the methyl substituent. J. Bacteriol. 119: 923-929
Davis RS, Hossler FE and Stone RW (1968) Metabolism of p- and m-xylene by species of Pseudomonas. Can. J. Microbiol. 27: 1005-1009
Eastcott, L., W. Y. Shiu, and D. Mackay. 1988. Environmentally relevant physicochemical properties of hydrocarbons: a review of data and development of simple correlations. Oil Chem. Pollut. 4:191–216.
Evans JS and Venables WA (1990) Degradation of thiophene-2-carboxylate, furan-2-carboxylate, pyrrole-2-carboxylate and other thiophene derivatives by the bacterium Vibrio YC1. Appl. Microbiol. Biotechnol. 32: 715-720
Feinberg EL, Ramage PIN and Trudgill PW (1980) The degradation of n-alkylcycloalkanes by a mixed bacterial culture. J. Gen. Microbiol. 121: 507-511
Foght JM and Westlake DWS (1988) Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can. J. Microbiol. 34: 1135-1141
Foght J.M., Gutnick D.L. y Westlake D.W.S. (1989). Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures. Applied and Environmental Microbiology Vol.5, N°1, 36-42.
Fortnagel P, Harms H, Wittich R-M, Krohn S, Meyer H, Sinnwell V, Wikes H and Francke W (1990) Metabolism of dibenzofuran by Pseudomonas sp. Strain HH69 and the mixed culture HH27. Appl. Environ. Microbiol. 56: 1148-1156
Francis H. Chapelle (ed), 2001. Ground-Water Microbiology and Geochemistry Second Edition by John Wiley&Sons.
Ghazali, Farinazleen Mohamad, Raja Noor Zaliha Abdul Rahman, Abu Bakar Salleh, Mahiran Basri 2004. Biodegradation ofhydrocarbons in soil by microbial consortium. International Biodeterioration & Biodegradation 54:61 – 67
Gibson, D. T. 1971 Microbial degradation of hydrocarbons, p. 667-696. In: Goldberg, E. D. (ed.), Physical and chemical sciences research report I. Dahlem Workshop Report on the Nature of Sea Water.
Gibson, D. T., Mahadaven V, Jerina DM, Yagi H and Yeh H (1975) Oxidation of the carcinogens benzo〔a〕anthracene to dihydrodiols by bacterium. Science 189: 295-297
Goswami P and Singh HD (1991) Different modes of hydrocarbon uptake by two Pseudomonas species. Biotechnol. Bioeng. 37: 1-11
Guerin, W.F. and S.A. Boyd., 1995. Maintenance and induction of naphthalene degradation activity in Pseudomonas putida and an Alcaligenes sp. under different culture conditions. Appl. Environ. Microbiol. vol 61:4061-4068,
Hisatsuka, K., T. Nakahara, N. Sano, and K. Yamada. 1971. Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric. Biol. Chem. 35:686-692.
Jensen, V. 1975. Decomposition of oil wastes in soil. In: Kilbertus, G., O. Reisinger, A. Mourey, and J. Cancela da Fonseca (ed.), Proceedings of the First International Conference on Biodegradation and Humification 1974. University of Nancy, France.
Jensen, V. 1975. Bacterial flora of soil after application of oily waste. Oikios 26:152-158.
Jobson, A., F. D. Cook, and D. W. S. Westlake. 1972. Microbial utilization of crude oil. Appl. Microbiol. 23:1082-1089.
Jones, J. C., and M. A. Edington. 1968. An ecological survey of hydrocarbon-oxidizing microorganisms. J. of Gen. Microbiol. 52:381-390.
Kanagawa T and Kelly DP (1987) Degradation of thiophenes by bacteria isolated from activated sludge. Microb. Ecol. 13: 47-57
Kappeli O and Finnerty WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Candida tropicalis. J. Bacteriol. 140: 707-712
Kincannon, C. B. 1972. Oily waste disposal by soil cultivation process. EPA Publ. No. R2-72-110. Government Printing Office, Washington D.C.
Kiyohara, H., K. Nagao, K. Kauno, and K. Yano. 1982. Phenanthrene-degrading enzyme phenotype of Alcaligenes facalis AFK2. Appl. Environ. Microbiol. 43:458-461.
Koch AK, Kapelli O, Fiechter A and Keiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J.Bacteriol. 173:4212-4219
Kunz DA and ChapmanPJ (1981a) Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: Evidence for new functions of the TOL (pWWO) plasmid. J. Bacteriol. 146: 179-191
Lloyd-Jones G and Trudgill PW (1989) The degradation of alicyclic hydrocarbons by a microbial consortium. Int. Biodet. 25:197-206
Magor AM, Warburton J, Trower MK and Griffin M (1986) Comparative study of the ability of three Xanthobacter species to metabolise cycloalkanes. Appl. Environ. Microbiol. 52: 665-671
Makula, R. A., P. J. Lockwood, and W. R. Finnerty. 1975. Comoarative analysis of the liquid of Acinetobacter species grown on hexadecane. J. Bacteriol. 121:250-258.
Maliyekkal, S. M. et al (2004) Performance of BTX degraders under substrate versatility conditions. J. Hazard. Materials B109 :201-211.
McKee, J. E., F. B. Laverty, and R. M. Hertel. 1972. Gasoline in groundwater. J. Water Pollut. Contr. Fed. 44:293-302.
McKenna EJ and Kallio RE (1971) Microbial metabolism of the isoprenoid alkane pristane. Proc. Natl. Acad. Sci. U.S.A. 68:1552-1554
Michelcic, J.R. and R.G. Luthy, 1988. Microbial degradation of acenapthene and napthalene under denitrification conditions ins soil water conditions. Appl. Environ. Microbiol., Vol. 54, 1188-1198.
Miller, R. M. and Bartha, R. (1989) Evidence from liposome encapsulation for transport-limited microbial metabolism of soild alkane. Appl. Environ. Microbiol. 55:268-274
Mimura, A., I. Takeda, and R. Waskasa. 1973. Some characteristic phenomena of oxygen transfer in hydrocarbon fermentation, p. 467-484. In: Biotechnology and Bioengineering Syposium No. 4. John Wiley&Sons, New York.
Mironov, O. C. 1970. Role of microorganisms growing on oil in the self purification and indication of oil pollution in the sea. Oceanology 10:650-656.
Mironov, O. C., and A. A. Lebed. 1972.Hydrocarbon oxidizing bacteria in the North Atlantic. Hydrobiol. J. 8:71-74.
Mormile MR and Atlas RM (1988) Mineralization of the dibenzothiophene biodegradation products 3-hydroxy-2-formyl benzothiophene and dibenzothiphene sulfone. Appl. Environ. Microbiol. 54: 3183-3184
Mueller JG, Chapman PJ, Blattmann BO and Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol. 56: 1079-1086
Mulkins-Phillips, G. J., and J. E. Stewart. 1974. Distribution of hydrocarbon utilizing bacteria in north western Atlantic waters and coastal sediments. Can. J. Microbiol. 20:955-962.
Nakahara, T., K. Hisatsuka, and Y. Minoda. 1981. Effect of hydrocarbon emulsification on groeth and respiration of microorganisms in hydrocarbon media. J. Ferm. Technol. 59:415-418.
Nakajima K, Sato A, Takahara Y and Iida T (1985) Microbial oxidation of isoprenoid farnesane. Agric. Biol. Chem. 49: 1993-2002
Odu, C. T. I. 1978. Fermentation characteristics and biochemical reactions of some organisms isolated from oil-polluted soils. Environ. Pollut. 15:271-276.
Parekh VR, Traxler RW and Sobek JM (1977) n-Alkane oxidation neezymes of a pseudomonad. Appl. Environ. Microbiol. 33:881-884
Perry, J. J. 1977. Microbial metabolism of cyclic hydrocarbons by microorganisms isolatedfrom soil. Can J. Microbiol. 14:403-407.
Prichard, P.H., Bourquin, A.W., 1984 The use of microcosms for evaluation of interactions between pollutants and microorganisms. In: Marshall, K.C. (Ed.) Advances in Microbial Ecology, vol. 7, Plenum Press, New York.
Richard C. and M. Kiredjian ,1992, Laboratory methods for the identification of strictly aerobic gram-negative bacilli. Institut Pasteur, Paris, Frannce.
Pirnik MP, Atlas RM and Bartha R (1974) Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. J. Bacteriol. 119: 868-878
Reisfeld, A., E. Rosenberg, and D. Gutnick. 1972. Microbial degradation of crude oil: Factors affecting the dispersion in sea water by mixed and pure cultures. Appl. Microbiol. 24:363-368.
Robert E. Hinchee and Jeffrey A Kittel, H. James Reisinger(Eds.). 1995. Applied bioremediation of petroleum hydrocarbons. Columbus: Battelle Press,
Robertson BR and Button (1987) Toluene induction and uptake kinetics and their inclusion in the specific-affinity relationship for describing rates of hydrocarbon metabolism. Appl.Environ. Microbiol. 53: 2193-2205
Schocken, M. J., and D. T. Gibson. 1984. Bacterial oxidation of the polycyclic aromatic hydrocarbon acenaphthalene. Appl. Environ. Microbiol. 48:10-16
Schraa G, Bethe BM, van Neerven ARW, van den Tweel WJJ, van der Wende E and Zehnder AJB (1987) Degradation 1,2-dimethylbenzene by Corynebacterium strain C125. Antonie van Leewenhoek 53: 159-170
Shell International Ltd., 1983. The chemistry of petroleum. In: The Petroleum Handbook, 6th ed., Elsevier. New York, pp.223-264.
Shim, H., S. T. Tang (1999) Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by co-culture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor, J. Biotechol. 67:99-112
Simpson HD, Green J and Dalton H (1987) Purification and some properties of a novel heat-stable cis-toluene dihydrodiol dehydrogenase. Biochem. J. 244:585-590
Singer ME and Finnerty WR (1984a) Microbial metabolism of straight-chain and branched alkanes. IN: RM Atlas (ed) Petroleum Microbiology (pp1-59). Macmillan, New York
Smith MR and Ratledge C (1989b) Catabolism of biphenyl by Pseudomonas sp. NCIB 10643 and Norcardia sp. NCIB 10503. Appl. Microbiol. Biotechnol. 30: 395-401
Soli, G. 1973. Marine hydrocarbonoclastic bacteria: Types and range of oil degradation, p. 141-146. In: Ahearn, D. G., and S. P. Meyers (ed.), The microbial degradation of oil pollutants. Publ. No. LSU-SG-73-001. Center for Wetland Resources, Baton Rouge, Louisiana.
Sorkhoh, N.A., Al-Hasan, R.H., Khanafer, M., Radwan, S.S., 1995. Establishment ofoil-degrading bacteria associated with cyanobacteria in oil-polluted soil. Journal ofApplied Bacteriology 78, 194–199.
Standard Method
Stelmack, P.L., Gray, M.R., Pickard, M.A., 1999. Bacterial adhesion to soil contaminants in the presence ofsurf actants. Applied and Environmental Microbiology 65, 163–168.
Stirling LA, Watkinson RJ and Higgins IJ (1977) Microbial metabolism of alicyclic hydrocarbons: isolation and properties of a cyclohexane-degrading bacterium. J. Gen. Microbiol. 99:119-125
The prokaryotes, 1981.
van Afferden M, Schacht S, Klein J and Truper HG (1990) Degradation of dibenzothiophene by Brevibacterium sp. DO. Arch. Microbiol. 153: 324-328
van den Tweel WJJ, Janssens and de Bont JAM (1986) Degradation of 4-hydroxyphenylacetate by Xanthobacter 124X. Antonie van Leeuwenhoek 52:309-318
Viliesid F, Lilly MD. 1992 Influence of dissolved oxygen tension on the synthesis of catechol 1,2-dioxygenase by Pseudomonas putida. Enzyme Microb Technol 14:561-565.
Vecht SE, Platt MW, Er-El Z and Goldberg I (1988) The growth of Pseudomonas putida on m-toluic acid and on toluene in batch and chemostat culture. Appl. Microbiol. Biotechnol. 27: 587-592
Walker, J. D., and R. R. Colwell. 1974. Microbial degradation of model petroleum at low temperatures. Microbiol. Ecol. 1:63-95.
Walker, J. D., and R. R. Colwell. 1975. Factors affecting the enumeration and isolation of actinomyces from Chesapeake Bay and south eastern Atlantic Ocean sediments. Mar. Biol. 30:193-201.
Walker, J. D., and R. R. Colwell. 1976. Enurmeration of petroleum-degrading microorganism. Appl. Environ. Microbiol. 31:198-207.
Walter U, Beyer M, Klein J and Rehm H-J (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl. Microbiol. 34:671-676
Weissenfels WD, Beyer M and Klein J (1990) degradation of fluorene and fluoranthene by pure bacterial cultures. Appl. Microbiol. Biotechnol. 34: 528-535
Westlake, D. W. S., A. Jobson, R. Phillippe, and F. D. Cooke. 1974. Biodegradability and crude oil composition. Canadian J. of Microbiol. 20:915-928.
Winstanley C, Taylor SC and William PA (1987) pWW174: A large plasmid from Acinetobacter calcoaceticus encoding benzene catabolism by the β-ketoadipate pathway. Mol. Microbiol. 1: 219-227.
Written and Edited by Kenneth Todar University of Wisconsin-Madison Dep. Of Bacteriology. All rights reserved.
Yerushalmi L. et al., 2002, Kinetics of benzene biotransformation under microaerophilic and oxygen-limited conditions. Biotechnol and Bioengineer 79:347-355.
ZoBell, C. E. 1964. The occurrence, effects and fate of oil polluting the sea. Adv. Water. Poll. Reasearch 3:85-118.