簡易檢索 / 詳目顯示

研究生: 林立偉
Lin, Li-Wei
論文名稱: 奈米雙層柱狀核殼結構之表面電漿模態
Surface Plasmon mode in core-shell nano-cylindrical structures
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 64
中文關鍵詞: 奈米雙層柱狀核殼結構混成軌域模型表面電漿
外文關鍵詞: Photothermal therapy, Rod-in-Shell, plasmonic resonance, dispersion relation, hybridization model
相關次數: 點閱:117下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於奈米金粒子可以利用Au–S 鍵結與光熱療法中的目標癌細胞組織表面產生作用附著於其上,故奈米金粒子成為光熱療法中熱門的研究對象,在所有的金奈米粒子結構中又以奈米雙層柱狀殼核結構對於生物窗口波段上的吸收效率最高並且具有最好的光學調控性,在本篇論文中使用Compact FDTD演算法來深入了解金奈米雙層柱狀殼核結構的色散關係與表面電漿響應模態,在分析目標結構前我們先分析奈米金孔洞、奈米金柱於金孔洞之中與奈米金球殼結構以對各種奈米柱狀波導結構有初步的了解,在熟悉各圓柱結構波導的色散特性後我們繪製在light cone內外的電場分布以及電荷分佈來對各結構下的模態特性有進一步的了解,在大尺度之下我們利用角動量分裂的概念來分析表面電漿模態以及圓柱波導模態,也使用了混成模型來分析光學特性以及解釋表面電漿模態的相互耦合作用並探討表面電漿共振如何造成了色散曲線的分裂,在論文的最後我們試著將金奈米雙層柱狀殼核結構縮小至生物醫學領域上所適用的尺度並透過改變其內層空氣層厚度與外層金球殼厚度來調控此結構下的色散曲線。

    The gold nanoparticles are promising candidates for the application of Photothermal therapy because their surface is easier to functionalize with the ligands targeted to the tumor cells using the Au–S bond. Among all the structures gold nano rod-in-shell structures has more absorption efficiency in therapeutic window and more optical tunability. In this thesis, we use compact FDTD algorithm to solve waveguide dispersion relation of a core-shell nano-cylindrical structures for in-depth investigation of the dispersion relation and plasmonic resonance mode. Before analyzing core-shell nano-cylindrical structures we fist analyze the hollow cylindrical structure, core in cylindrical hole and shell cylindrical structure to have rudimentary grasp of nano-cylindrical structures. After knowing the dispersion relation of each structure we comparing the mode characteristics within and outside the light cone by plotting the mode pattern and charge distribution to have further grasp of each structure. We use angular mode to analyze the higher order SPP waveguide mode for cylindrical waveguide with larger diameters. We also use the Hybridization Model to analyze the optical property and mode interaction of the plasmonic resonance mode and discuss how the surface plasmon polarization leads to the splitting of dispersion curve. In the end of the thesis, we try to minimize the scale of core-shell nano-cylindrical structures and by changing its gap size and shell size to tune the dispersion of nano-cylindrical structures.

    中文摘要 I Abstract II 誌謝 VIII 目錄 IX 圖目錄 X 第一章 序論 1 1.1 前言、文獻回顧 1 1.2 研究動機與本文內容 2 第二章 表面電漿子與其相關理論簡介 4 2.1 金屬表面電漿與波導色散關係 4 2.1.1 表面電漿成因 4 2.1.2 Drude Model 4 2.1.3 無窮大介面表面電漿模態 8 2.1.4 二維空間下金屬孔洞色散關係 13 2.1.5 二維空間下核殼結構色散關係 16 2.2 Hybridization Model 18 第三章 有限時域差分法 19 有限時域差分法(FDTD)簡介 19 3.1 FDTD演算法 19 3.1.1 馬可士威爾方程組與有限時域差分法 19 3.1.2 簡潔有限時域差分法Compact FDTD 26 3.2 完美匹配層(Perfectly Matched Layer,PML) 27 3.3 模擬空間設置 33 第四章 模擬結果與討論 35 4.1 奈米金孔洞FDTD數值解下的色散曲線與模態分析 35 4.2 奈米金柱於金孔洞中FDTD數值解下的色散曲線與模態分析 40 4.3 奈米金球殼FDTD數值解下的色散曲線與模態分析 45 4.4 雙層柱狀金殼核FDTD數值解下的色散曲線與模態分析 50 第五章 結論與未來展望 61 5.1 結論 61 5.2 未來工作 62 參考文獻 63

    [1] I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, "Electrostatic (plasmon) resonances in nanoparticles," Physical Review B, vol. 72, pp. 155412(2005).
    [2] Shanshan Wang, Hong Xu, and Jian Ye, Plasmonic rod-in-shell nanoparticles for photothermal therapy," Phys. Chem. Chem. Phys, vol16, pp. 12275-12281(2014)
    [3] S. W. Prescott and P. Mulvaney, "Gold nanorod extinction spectra," Journal of Applied Physics,vol. 99, pp. 123504(2006).
    [4] E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for
    the plasmon response of complex nanostructures," Science, vol. 302, pp. 419(2003)
    [5] J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," Journal of computational physics, vol. 114, pp. 185-200, (1994).
    [6] Peter B. Catrysse, and Shanhui Fan, " Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry," Appl. Phys. Lett, vol. 94, pp. 2311119(2009).
    [7] E. N. EcoNOMOU, "Surface plasmon in thin films," Physical Review, vol. 182, pp. 2(1969).
    [8] Olga Kozina , Igor Nefedov , Leonid Melnikov, and Antti Karilainen, "Plasmonic Coaxial Waveguides with Complex Shapes of Cross-Sections," Materials, vol4(1)(2011).
    [9] F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic
    coaxial waveguides in the optical range: Role of the plasmonic modes, " Phys. Rev. B ,vol. 74,pp.205419(2006).
    [10] Yang Peng-Fei, Gu Ying, and Gong Qi-Huang, " Surface plasmon polariton and mode transformation in a nanoscale lossy metallic cylindrical cable, " Chinese Physics B, vol. 17, pp1056-1674(2008).
    [11] M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su, et al., "Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy," Acs Nano, vol. 7, pp. 5330-5342(2013).
    [12] N. Berkovitch, P. Ginzburg, and M. Orenstein, "Concave plasmonic particles: broad-band geometrical tunability in the near-infrared," Nano Letters, vol. 10, pp. 1405-1408(2010).
    [13] I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, "Electrostatic (plasmon) resonances in nanoparticles," Physical Review B, vol. 72, pp. 155412(2005).
    [14] Rizia Bardhan, Shaunak Mukherjee, Nikolay A. Mirin, Stephen D. Levit, Peter Nordlander and Naomi J. Halas, "Nanosphere-in-a-Nanoshell: A Simple Nanomatryushka," J. Phys. Chem. C, vol. 114(16), pp. 7378-7383(2010).
    [15] P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Letters, vol. 4, pp. 899-903(2004).
    [16] D. J. Wu and X. J. Liu, "Tunable near-infrared optical properties of three-layered gold-silica-gold nanoparticles," Applied Physics B, vol. 97, pp. 193-197(2009).
    [17] Jian, Z., Jian-jun, L. & Jun-wu, "Tuning the Dipolar Plasmon Hybridization of Multishell Metal-Dielectric Nanostructure: Gold Nanosphere in a Gold Nanoshell, " Plasmonics, vol. 6, pp. 527(2011).
    [18] G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B, vol. 68, pp. 155427(2003).
    [19] Ki Young Kim, "Fundamental guided electromagnetic dispersion characteristics in lossless dispersive metamaterial clad circular air-hole waveguides," Journal of Optics A: Pure and Applied Optics, vol. 9(2007).
    [20] Oleg Mitrofanov, and James A. Harrington, "Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion" Optics Express, vol. 18, pp.1898-1903(2010).
    [21] K. Y. Kim, Y. K. Cho, H. S. Tae, and J. H. Lee, "Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes," Opto-Electronics Review, vol. 14, pp. 233-241(2006).
    [22] Hocheol Shin, Peter B. Catrysse, and Shanhui Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B, vol. 72, pp. 085436(2005).
    [23] Shinji Hayashi, and Takayuki Okamoto, "Plasmonics: visit the past to know the future," Journal of Physics D, vol. 45, pp. 43(2012).

    下載圖示 校內:2021-07-26公開
    校外:2021-07-26公開
    QR CODE