簡易檢索 / 詳目顯示

研究生: 邱毓權
Chiu, Yu-Chuan
論文名稱: 平行化處理應用於離岸風機套管式支撐結構設計
Parallel Processing Techniques and Applications in Design of the Jacket-Type Offshore Wind Turbine
指導教授: 朱聖浩
Ju, Shen-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 144
中文關鍵詞: 套管式離岸風機平行化處理隨機波浪模擬莫里森方程式
外文關鍵詞: Jacket-type offshore wind turbine, parallel processing, stochastic wave simulation, Morison’s equation
相關次數: 點閱:126下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離岸風機要達成20年設計壽命,首先須對環境外力進行詳細評估。本研究重點分三部分,第一部分離岸風機環境載重模組開發,參考IEC 61400-1、IEC 61400-3、DNV-RP-C205、分別撰寫風場模型、波浪模型,海流模型。氣動力負載部分,使用美國再生能源實驗室開發之Turbsim程式模擬紊流風場,以及FAST程式計算風機上部結構風力負載;水動力負載部分,使用流函數模型(Stream function wave theory)及二階動態模型(Second-order kinematics model),分別模擬規則波與不規則波波浪質點運動特性,並與海流疊加,最後代入莫里森方程式(Morison’s equation)求得波流負載。第二部分說明相關輔助程式輸入檔之整合,整合之共用輸入檔加入複製功能、迴圈功能、列舉功能,快速完成設計載重組合之建立,並使用平行化處理技巧提升計算效率。第三部分為說明共用輸入檔中,有限元素數值模型建立方式及設計載重組合設定方式,分別參考NREL 5MW參考風機模型及IEC 61400-3設計載重組合。本研究完成1326個載重組合之分析與設計,使用多機平行化處理技巧確實能縮短分析時間之目的。電腦輔助分析程式由 朱聖浩教授研究團隊所開發,分析程式與研究成果皆為公開資源。

    For at least 20-year design lifetime, it is necessary to assess the environmental loads first. This thesis is divided into three parts. The first part deals with the development of environmental load module including wind models, wave models, and current models on the basis of IEC61400-1, IEC61400-3, and DNV-RP-C205. For aerodynamic loads, the Turbsim program developed by National Renewable Energy Laboratory (NREL) was employed to simulate turbulent inflow, and the FAST program was used to calculate wind loads acting on the rotor-nacelle assembly. For hydrodynamic loads, the Stream function wave theory and the Second-order kinematics model were used to simulate wave kinematics in regular waves and irregular waves respectively. After the superposition of wave velocities and current velocities, the hydrodynamic loads acting on the support structure were obtained by using the Morison’s equation. The second part describes integration of the input files from related computer aided programs. The functions of copying, looping, and listing were added to the common input file for generating design load cases rapidly, and the parallel processing techniques were used to enhance calculation efficiency. The third part introduces the parameter setting in the common input file for establishing a finite element model and design load cases according to NREL 5-MW reference wind turbine and IEC 61400-3 standard. Note that the computer programs developed by the research team of Shen-Haw Ju are open and free to use.

    致謝 I 摘要 II Extended Abstract III 目錄 VII 表目錄 X 圖目錄 XII 第1章 緒論 1 1.1 前言 1 1.2 參考文獻 4 1.3 論文架構 5 第2章 三維風力數值模擬與分析 7 2.1 三維風場模型 7 2.1.1 紊流風場模型 8 2.1.2 穩流風場模型 10 2.1.3 熱帶氣旋風場模型 13 2.2 風場數值模擬 14 2.2.1 紊流風場數值模擬 14 2.2.2 穩流風場數值模擬 22 2.2.3 熱帶氣旋數值模擬 27 2.3 風力數值分析 28 2.3.1 離岸風機上部結構之作用風力分析 28 2.3.2 離岸風機支撐結構之作用風力分析 30 第3章 三維波流數值模擬與分析 33 3.1 三維波浪模型 33 3.1.1 線性與非線性規則波模型 35 3.1.2 線性與非線性不規則波模型 39 3.2 海流模型 44 3.2.1 水下海流模型 44 3.2.2 近表面流模型 44 3.2.3 近岸海流模型 44 3.3 波浪數值模擬 45 3.3.1 線性與非線性規則波數值模擬 45 3.3.2 線性與非線性不規則波數值模擬 50 3.4 波浪力與海流力數值分析 55 第4章 程式整合 60 4.1 整合目的 60 4.2 程式說明及流程 61 4.3 共用輸入檔 65 4.3.1 輸入檔功能 65 4.3.2 支撐結構模型定義 70 4.3.3 設計負載組合定義 77 4.4 程式應用 85 4.4.1 支撐結構鋼材最佳化設計 85 4.4.2 設計負載組合平行化處理 87 4.5 操作說明 89 4.5.1 各程式執行操作範例 89 4.5.2 單機最佳化操作範例 91 4.5.3 多機平行化操作範例 92 第5章 案例說明 93 5.1 有限元素控制參數 103 5.2 支撐結構模型 104 5.3 鋼構設計材料參數 111 5.4 環境載重組合 112 5.5 設計結果 122 第6章 結論 125 參考文獻 127 附錄A 129 附錄B 135

    [1]經濟部能源局,千架海陸風力機風力資訊整合平台。網址:http://www.twtpo.org.tw/
    [2]4C Offshore,http://www.4coffshore.com/windfarms/windspeeds.aspx
    [3]Veers, P.S. (1988), Three-Dimensional Wind Simulation. SAND88-0152. Albuquerque, NM: Sandia National Laboratories.
    [4]Kelley, N.D. (1992), Full Vector (3-D) Inflow Simulation in Natural and Wind Farm Environments Using an Expanded Version of the SNLWIND (VEERS) Turbulence Code. NREL/TP-442-5225. Golden, CO: National Renewable Energy Laboratory.
    [5]Dean, R.G. (1965), “Stream Function Representation of Nonlinear Ocean Wave” Journal of Geophysical Research Vol 70, No 18 P4561-4572
    [6]Sharma, J.N. , Dean, R.G. (1981), “Second-Order Directional Seas and Associated Wave Forces” Society of Petroleum Engineers Journal, 4:129-140.
    [7]Dean, R. G. (1972), “Application of Stream Function Wave Theory to Offshore Design Problems”, Fourth Annual Offshore Technology Conference, Houston, Texas, May.
    [8]Xiaobo Chen, Jing Li, and JianYun Chen (2014), ”Nonlinear wave and currents loads analysis of offshore wind turbine.” KSCE Journal of Civil Engineering. Vol. 18, No. 6, pp.1877-1883.
    [9]Wu, Ting-Jiun, Huang, Chin-Cheng, Su, Wei-Nian (2015), “Comparison of Extreme Load Calculation between IEC and GL Offshore Wind Turbine Design Guideline Using NREL 5 MW Reference Offshore Wind Turbine”, Institute of Nuclear Energy Research.
    [10]Bae-sung Kim, Ji-won Jin, Olga Bitkina and Ki-weon Kang (2016), “Ultimate load characteristics of NREL 5-MW offshore wind turbines with different substructures,” International Journal of Energy Research.
    [11]IEC 61400-1 (2005), International Standard Wind turbines – Part 1: Design requirements (3rd ed.), International Electrotechnical Commission
    [12]IEC 61400-3 (2009), International Standard Wind turbines – Part 3: Design requirements for offshore wind turbines (1st ed.), International Electrotechnical Commission
    [13]DNV-OS-J101 (2014), Design of Offshore Wind Turbine Structures. Offshore Standard, Det Norske Veritas, Norway
    [14]GL Renewables Certification (2013), Certification of Wind Turbines for Tropical Cyclone Conditions. Technical Note, Germany
    [15]J. Jonkman, S. Butterfield, W. Musial, and G. Scott (2009), Definition of a 5-MW Reference Wind Turbine for Offshore System Development, National Renewable Energy Laboratory, Technical Report NREL/TP-500-38060
    [16]J. Jonkman, L. Marshall, Jr. Buhl, (2005), FAST User’s Guide. National Renewable Energy Laboratory, Technical Report, NREL/EL-500-38230 .
    [17]J. Jonkman, , Turbsim User’s Guide,(2014). National Renewable Energy Laboratory, Technical Report. DRAFT VERSION.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE