| 研究生: |
何冠穎 Ho, Kuan-Ying |
|---|---|
| 論文名稱: |
運用動態擴散模型建立觀光需求預測模式─以陸客來台為例 Tourism Demand Forecasting for Taiwan:Using Dynamic Diffusion Model |
| 指導教授: |
耿伯文
Kreng, Bor-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 動態擴散模型 、觀光需求 、市場潛量 、遊憩承載量 |
| 外文關鍵詞: | Dynamic Diffusion Model, Tourism Demand, Market Potential, Recreational Carrying Capacity |
| 相關次數: | 點閱:143 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自2008年7月兩岸政策鬆綁,允許大陸旅客來臺觀光,除了改變臺灣觀光產業之型態,更影響近年來產業的發展,已於2011年突破178萬人次,位居來台旅客人數第一名,截至2012年7月更帶來68.5億美元的外匯收入;另一方面,隨著陸客大量的湧入台灣,旅遊品質的下降、遊覽車司機的不足以及一房難求的新聞也就時有耳聞。由此可見,對台灣而言,陸客在觀光市場上,具有舉足輕重的角色。
任何產業的發展規劃都需依照該產業之需求來評估設計,唯有清楚認知觀光需求的現況,才能使市場行銷人員制定更有市場競爭力的價格,同時做為政府單位評估觀光發展的效益以及編列預算的依據。因此,本研究將嘗試以動態擴散模型為基礎,結合經濟因素與政策的變動影響到潛在使用者人數,進而影響市場潛量的假設來建構預測大陸觀光客來台人數的模式,同時,討論臺灣的遊憩承載量,期望能夠提供政府制定政策以及未來產業發展之規劃,此外,做為觀光相關產業制定行銷策略之參考。
研究結果顯示,陸客來台的觀光市場是以口碑的傳播為主要傳播管道且季節波動明顯,市場潛量的影響則以兩岸相對價格為主,政策的干預尚未對整體市場造成顯著變化;接待力評估上,旅館住房、旅行社、導遊及遊覽車等四方面皆為充裕,在未來惟有會受到政策人數限制的影響,以及需積極解決客層過於集中的問題。
臺灣深受觀光客的喜愛,然而受限地狹人稠的地理環境,使得景區快速發展的同時,無法兼顧旅遊品質,因此政府在推行觀光的同時,應對整體環境作一全盤的規劃,使能打造一無縫的永續服務觀光環境。
Since July, 2008, the new tourism’s policy permitted mainland tourists to sightsee in Taiwan. This innovative policy not only changed the Taiwan tourism industry type, but also throve the whole industry development. In 2011, the mainland tourists were over 178 million and brought 6.85 billion US dollars till July, 2012. However, some travel quality declined problems were discussed on this issue, and, it can be seen that mainland tourists play an important role in tourism market in Taiwan.
The development and planning of all industry depend on their demand. Therefore, this study is based on dynamic diffusion model, and combines economic factors with policy variables to forecast the number of mainland tourists. Moreover, we consider the issue about recreational carrying capacity in Taiwan to provide suggestions for the government and tourism-related industry.
The results show the market of mainland tourists is fluctuated by word-of-mouth information diffusion and has obvious seasonal fluctuation. The market potential is affected with the relative price and does not cause a significant variation by policy variables. Besides, in the carrying capacity part, all capacities of the four aspects are abundance for hotel, travel agency, tour guide, and tourist coach. In the future, the development of tourism market will be restricted by the limitation of tourist number policy and the government will need to positively solve the question of same tourist group.
中文部分:
中國旅遊研究院(2012),中國出境旅遊發展年度報告2012,北京市:旅遊教育出版社
王淑美、溫蓓章(2010),開放陸客來臺旅遊經濟效益分析,遠景基金會季刊, 11(3), 133-175
交通部公路總局,統計年報, 2013年3月13日,取自公路總局統計年報:http://www.thb.gov.tw/tm/Webpage.aspx?entry=72
交通部觀光局(2010),開放大陸居民赴台旅遊屆滿兩周年實施成效說帖,2012年8月30日,取自觀光局行政資訊系統:http://admin.taiwan.net.tw/news/news_d.aspx?no=174&d=2614&tag=1
交通部觀光局(2012),「海峽兩岸關於大陸居民赴臺灣旅遊協議」101年7月執行成效, 2012年8月18日,取自觀光局行政資訊系統:http://admin.taiwan.net.tw/public/public.aspx?no=294
交通部觀光局(2012),中華民國100年來臺旅客消費及動向調查報告,台北市:觀光局
交通部觀光局,營運統計月報表,2013年2月10日,取自觀光旅館業管理資訊系統:http://t-hotel.tbroc.gov.tw/index/index.asp
交通部觀光局,觀光統計年報, 2012年9月30日,取自觀光局行政資訊系統:http://admin.taiwan.net.tw/statistics/year.aspx?no=134
行政院(2010),觀光拔尖領航方案,2012年9月27日,取自行政院全球資訊網:http://www.ey.gov.tw/default.aspx
行政院大陸委員會(2011),開放陸客自由行的政策意義--擴大相關產業受益層面深度體驗臺灣多元民主,2012年9月17日,取自陸委會網站:http://www.mac.gov.tw/np.asp?ctNode=5582&mp=1
周嫦娥、吳旻華(2005),業者看會議產業的現在與未來—專訪臺大醫學會議中心會議部馬德婕經理,臺灣經濟研究月刊,28(3),26-31
翁景民. (1999). 服務創新產品擴散模式之研究-合併通路, 價格及不確定性之整合模型.臺大管理論叢, 10(1), 199-224.
國家統計局. (2012).中國統計年鑑2012: 北京:中國統計出版社.
劉瑋婷(2009),開放陸客來台觀光之影響與探討,台灣經濟研究月刊, 32(8),57-63
外文部分:
Bass, F. M. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215–227.
Bicak, H. A., Altinay, M., & Jenkins, H. (2005). Forecasting the tourism demand of North Cyprus. Journal of Hospitality & Leisure Marketing, 12(3), 87-99.
Blake, A., Durbarry, R., Eugenio-Martin, J. L., Gooroochurn, N., Hay, B., Lennon, J., . . . Yeoman, I. (2006). Integrating forecasting and CGE models: The case of tourism in Scotland. Tourism Management, 27(2), 292-305.
Burger, C., Dohnal, M., Kathrada, M., & Law, R. (2001). A practitioners guide to time-series methods for tourism demand forecasting—a case study of Durban, South Africa. Tourism Management, 22(4), 403-409.
Casey, T. R., & Töyli, J. (2012). Mobile voice diffusion and service competition: A system dynamic analysis of regulatory policy. Telecommunications Policy, 36(3), 162-174.
Chu, F. L. (1998). Forecasting tourism demand in Asian-Pacific countries. Annals of Tourism Research, 25(3), 597-615.
Chun, S. Y., & Hahn, M. (2008). A diffusion model for products with indirect network externalities. Journal of Forecasting, 27(4), 357-370.
Doong, H. S., Law, R., & Wang, H. C. (2009). An initial investigation of integrating innovation diffusion models for drawing first‐time visitors. Journal of Travel & Tourism Marketing, 26(1), 19-29.
Fok, D., & Franses, P. H. (2007). Modeling the diffusion of scientific publications. Journal of econometrics, 139(2), 376-390.
Getz, D. (1986). Models in tourism planning: Towards integration of theory and practice. Tourism Management, 7(1), 21-32.
Goh, C., & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 23(5), 499-510.
Goh, C., & Law, R. (2011). The methodological progress of tourism demand forecasting: a review of related literature. Journal of Travel & Tourism Marketing, 28(3), 296-317.
Gruber, H., & Verboven, F. (2001). The diffusion of mobile telecommunications services in the European Union. European Economic Review, 45(3), 577-588.
Guidolin, M., & Mortarino, C. (2010). Cross-country diffusion of photovoltaic systems: modelling choices and forecasts for national adoption patterns. Technological Forecasting and Social Change, 77(2), 279-296.
Hall, C. M., & Page, S. (2002). The geography of tourism and recreation: environment, place and space: Psychology Press.
Han, Z., Durbarry, R., & Sinclair, M. T. (2006). Modelling US tourism demand for European destinations. Tourism Management, 27(1), 1-10.
Ho, T.H., Savin, S., & Terwiesch, C. (2002). Managing demand and sales dynamics in new product diffusion under supply constraint. Management Science, 48(2), 187-206.
Horsky, D. (1990). The effects of income, price and information on the diffusion of new consumer durables. Marketing Science, 9(4), 342-365.
Huang, J. H., & Min, J. C. H. (2002). Earthquake devastation and recovery in tourism: the Taiwan case. Tourism Management, 23(2), 145-154.
Huarng, K. H., Moutinho, L., & Yu, T. H. K. (2007). An advanced approach to forecasting tourism demand in Taiwan. Journal of Travel & Tourism Marketing, 21(4), 15-24.
Islam, T., & Meade, N. (1996). Forecasting the development of the market for business telephones in the UK. Journal of the Operational Research Society, 47(7), 906-918.
Jain, D., Mahajan, V., & Muller, E. (1991). Innovation diffusion in the presence of supply restrictions. Marketing Science, 10(1), 83-90.
Karshenas, M. D., & Stoneman, P. (1992). A flexible model of technological diffusion incorporating economic factors with an application to the spread of colour television ownership in the UK. Journal of Forecasting, 11(7), 577-601.
Kim, N., Chang, D. R., & Shocker, A. D. (2000). Modeling intercategory and generational dynamics for a growing information technology industry. Management Science, 46(4), 496-512.
Kim, S. S., Guo, Y., & Agrusa, J. (2005). Preference and positioning analyses of overseas destinations by mainland Chinese outbound pleasure tourists. Journal of Travel Research, 44(2), 212-220.
Kulendran, N., & King, M. L. (1997). Forecasting international quarterly tourist flows using error-correction and time-series models. International Journal of Forecasting, 13(3), 319-327.
Kunc, M. H. (2009). Forecasting the development of wine tourism: a case study in Chile. International Journal of Wine Business Research, 21(4), 325-338.
Law, R. (2000). Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting. Tourism Management, 21(4), 331-340.
Law, R., & Au, N. (1999). A neural network model to forecast Japanese demand for travel to Hong Kong. Tourism Management, 20(1), 89-97.
Lee, M., Kim, K., & Cho, Y. (2010). A study on the relationship between technology diffusion and new product diffusion. Technological Forecasting and Social Change, 77(5), 796-802.
Lewis, C. (1982). Industrial and business forecasting methods: Butterworth Scientific, London.
Lim, C. (1997). An econometric classification and review of international tourism demand models. Tourism Economics, 3(1), 69-81.
Lin, P. W. (2011). Research on tourism demand forecasting using grey theory. Master's dissertation,National Yunlin University of Science and Technology.
Mahajan, V., & Peterson, R. A. (1978). Innovation diffusion in a dynamic potential adopter population. Management Science, 24(15), 1589-1597.
Mahajan, V., Muller, E., & Bass, F. M. (1990). New product diffusion models in marketing: A review and directions for research. The Journal of Marketing, 54(1), 1-26.
Morley, C. L. (2009). Dynamics in the specification of tourism demand models. Tourism Economics, 15(1), 23-39.
Pearce, D., & Butler, R. (1995). Planning for tourism in the 1990s: an integrated, dynamic, multiscale approach. Change in tourism: people, places, processes, 229-244.
Rao, A. G., & Yamada, M. (1988). Forecasting with a repeat purchase diffusion model. Management Science, 34(6), 734-752.
Rogers, E. M. (1995). Diffusion of innovations,4rd ed.: New York: Free Press.
Rosselló, J., Aguiló, E., & Riera, A. (2005). Modeling tourism demand dynamics. Journal of Travel Research, 44(1), 111-116.
Schmittlein, D. C., & Mahajan, V. (1982). Maximum likelihood estimation for an innovation diffusion model of new product acceptance. Marketing Science, 1(1), 57-78.
Sharif, M. N., & Ramanathan, K. (1981). Binomial innovation diffusion models with dynamic potential adopter population. Technological Forecasting and Social Change, 20(1), 63-87.
Shelby, B., & Heberlein, T. A. (1984).A conceptual framework for carrying capacity determination.Leisure Sciences, 6(4), 433-451.
Shen, W., Duenyas, I.,& Kapuscinski, R. (2011). New Product Diffusion Decisions Under Supply Constraints. Management Science, 57(10), 1802-1810.
Song, H., & Li, G. (2008). Tourism demand modelling and forecasting—A review of recent research. Tourism Management, 29(2), 203-220.
Speece, M. W., & Maclachlan, D. L. (1995). Application of a multi-generation diffusion model to milk container technology. Technological Forecasting and Social Change, 49(3), 281-295.
Srinivasan, V., & Mason, C. H. (1986). Nonlinear least squares estimation of new product diffusion models. Marketing Science, 5(2), 169-178.
Sumner, E. Lowell.(1942). The biology of wilderness protection.Sierra Club Bulletin ,27(80), 14-22.
Talukdar, D., Sudhir, K., & Ainslie, A. (2002). Investigating new product diffusion across products and countries. Marketing Science, 21(1), 97-114.
Theil, H. (1965). The analysis of disturbances in regression analysis.Journal of the American Statistical Association, 60(312), 1067-1079.
Tsai, C. M. (2008). Integrating intra-firm and inter-firm knowledge diffusion into the knowledge diffusion model. Expert Systems with Applications, 34(2), 1423-1433.
Usha R., K., & Kishore, V. (2009). Wind power technology diffusion analysis in selected states of India. Renewable Energy, 34(4), 983-988.
Uysal, M., & Crompton, J. L. (1984). Determinants of demand for international tourist flows to Turkey. Tourism Management, 5(4), 288-297.
Wang, Y. S. (2009). The impact of crisis events and macroeconomic activity on Taiwan's international inbound tourism demand. Tourism Management, 30(1), 75-82.
Witt, S. F., & Witt, C. A. (1995). Forecasting tourism demand: A review of empirical research. International Journal of Forecasting, 11(3), 447-475.
校內:2014-06-18公開