簡易檢索 / 詳目顯示

研究生: 黃韻潔
Huang, Yun-Jie
論文名稱: 動態預燒策略應用於高可靠度產品以Gamma過程之衰退模型為例
Dynamic burn-in policy for highly reliable products under gamma degradation process
指導教授: 胡政宏
Hu, Cheng-Hung
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 77
中文關鍵詞: 預燒試驗Gamma過程衰退模型高可靠度產品
外文關鍵詞: burn-in test, gamma process, degradation model, highly reliable product
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類在現今的生活品質要求逐漸提高,並且在購買產品的能力也隨之上升,因此在對於產品的各層面要求甚高,故此時製造商會藉由預燒試驗來剔除不良品,以防止不良品落入顧客手中。另外,隨著現代的產品可靠度不斷提升,使用傳統預燒試驗已不再如以往有效率地挑選出不良品,有學者指出藉由觀察產品的品質特性,能有效提升預燒效率,隨著時間的增加,產品的品質特性則會發生衰退,因此可以使用適當的衰退模型來進行品質特性配置,過去研究指出Gamma過程是一種嚴格單調性的隨機過程,本研究將會以Gamma過程之衰退模型應用於品質特性的配置,有學者曾發展衰退模型基於Gamma過程下的預燒策略,在其研究中曾提出了最佳產品分類切點以及最佳預燒終止時間,而本研究是以Tsai et al.(2011)研究為基礎,其在成本最小化的概念下於終止時間時決定一分類切點,進行良品及不良品的分類。而本研究認為僅以一個時間點做為決策,一旦時間點拉長,會使得預燒策略效率低落,時間點短,則會使得決策太過倉促且精確度降低,故本研究考量的兩階段動態預燒試驗,針對兩種Gamma衰退模型,以動態規劃為概念進行求解,提出最佳分類切點和以及最佳分類區間,使得在終止時間點前,以預先篩選的方式,將表現良好之產品預先通過測試,反之,衰退程度高之產品則馬上剔除,以達到節省成本以及提升預燒試驗效率為目標進行預燒試驗。

    Customers have been requiring more and more for the product's quality nowadays. Due to the high standard for every aspect in a product, manufacturers would eliminate early failure or weak products by using the burn-in test, which could prevent the customers from getting the weak products. As the products reliability increases, the traditional burn-in test are not feasible for highly reliable products. As an alternative approach, we could use suitable degradation model to fit quality characteristic that is related to product's life. In this research, we propose a dynamic burn-in test procedure by removing weak units at the early stage of a test. Different from traditional burn-in test with only one measurement time, this research considers two stages of dynamic burn-in procedure. A mixed gamma process to describe the degradation path of the product, aiming two kinds of gamma degradation models, and find out solutions in the concept of dynamic plans. Decisions about finding an optimal cutoff point and optimal cutoff bounds are also discussed in this paper. A numerical example using parameters from past research efforts is also proposed for showing that our proposed method can significantly reduce the total test cost in a burn-in test.

    摘要 I 致謝 VIII 表目錄 XI 圖目錄 1 符號 2 第一章 緒論 4 1.1 研究背景與動機 4 1.2 文獻探討 5 1.3 研究目的 9 1.4 研究流程 10 1.5 論文架構 10 第二章 衰退模型建構 11 2.1 衰退模型 11 2.2 最佳分類切點 12 2.3 問題描述 14 第三章 M1模型之動態預燒程序 16 3.1 M1模型之兩階段時間點動態預燒程序 16 3.2 M1模型之兩階段時間點區間動態預燒程序 23 3.3 M1模型之研究方法應用──以氣體雷射資料為例 30 3.4 M1模型敏感度分析 36 第四章 M2模型之動態預燒程序 40 4.1 M2模型之兩階段時間點動態預燒程序 40 4.2 M2模型之兩階段時間點區間動態預燒程序 43 4.3 M2模型之研究方法應用──以氣體雷射資料為例 47 4.4 M2模型敏感度分析 51 第五章 模擬與分析 55 5.1 個案模擬 55 5.2 M1模型個案模擬 55 5.3 M2模型個案模擬 58 5.4 殘餘壽命評估 61 第六章 結論與未來研究議題 64 6.1 結論 64 6.2 未來研究議題 65 參考文獻 66 附錄 69

    [1]Bagdonavicius, V., & Nikulin, M. S. (2001). Estimation in degradation models with explanatory variables. Lifetime Data Analysis, 7(1), 85-103.
    [2]Cha, J. H., & Mi, J. (2007). Optimal burn-in procedure for periodically inspected systems. Naval Research Logistics, 54(7), 720–731.
    [3]Chang, D. S. (2000). Optimal burn-in decision for products with an unimodel failure rate function. European Journal of Operational Research, 126(3), 534–540.
    [4]Chien, W. T. K., & Kuo, W. (1997). A nonparametric Bayes approach to decide system burn-in time. Naval Research Logistics, 44(7), 655–671.
    [5]Crowder, M. & Lawless, J. (2007). On a scheme for predictive maintenance. European Journal of Operational Research, 176(3), 1713–1722.
    [6]Doksum, K.A. & Hbyland, A.(1992). Model for variable-stress accelerated lift testing experiments based on Wiener processes and the inverse Gaussian distribution.
    Technometrics, 34(1), 74-82
    [7]Jensen, F., & Petersen, N. E. (1982) Burn-in: An Engineering Approach to the Design and Analysis of Burn-in Procedures. New York: John Wiley & Sons.
    [8]Kuo, W. (1984). Reliability enhancement through optimal burn-in. IEEE Transactions on Reliability, R-33(2), 145–156.
    [9]Kuo, W., & Kuo, Y. (1983). Facing the headaches of early failures: a state-of-the-art review of burn-in decisions. Proceedings of the IEEE, 71(11), 1257–1266.
    [10]Lawless, J., & Crowder, M. (2004). Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Analysis, 10(3), 213–227.
    [11]Leemis, L. M., & Beneke, M. (1990). Burn-in models and methods: A review. IIE Transactions, 22(2), 172–180.
    [12]Mahmoud, M. A. W., & Moustafa, H. M. (1993). Estimation of a discriminant function from a mixture of two gamma distributions when the sample size is small. Mathematical and Computer Modelling, 18(5), 87-95.
    [13]Meeker, W. Q., & Escobar, L. A. (1998). Statistical Methods for Reliability Data. New York: John Wiley & Sons.
    [14]Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analysis. New York: John Wiley & Sons.
    [15]Nguyen, D. G., & Murthy, D. N. P. (1982). Optimal burn-in time to minimize cost for products sold under warranty. IIE Transactions, 14(3), 167–174.
    [16]Noortwika, J. M. V (2009) A survey of the application of gamma processes in maintenance. European Journal of Operational Research, 94(1), 2–21.
    [17]Pan, Z., & Balakrishnan, N. (2011). Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes. Reliability Engineering & System Safety, 96(8), 949-957.
    [18]Park, C., & Padgett, W. J. (2005). Accelerated degradation models for failure based on geometric Brownian motion and gamma processes. Lifetime Data Analysis, 11(4), 511–527.
    [19]Peng, C. Y. (2015). Optimal Classification Policy and Comparisons for Highly Reliable Products. Sankhya B,77(2), 321-358.
    [20]Singpurwalla, N. D. (1995). Survival in dynamic environments. Statistical Science, 10(1), 86–103.
    [21]Tsai, C.C., & Lin, C. T.(2014). Optimal Selection of the Most Reliable Design Based on Gamma Degradation Processes. Communications in Statistics-Theory and Methods, 43(10-12), 2419-2428.
    [22]Tsai, C. C., Tseng, S. T. & Balakrishnan, N. (2011). Optimal Burn-In Policy for Highly Reliable Products Using Gamma Degradation process. IEEE Transactions on Reliability, 60(1), 234-245.
    [23]Tseng, S. T., Balakrishnan, N. & Tsai, C. C. (2009). Optimal step-stress accelerated degradation test plan for gamma degradation process. IEEE Transactions on Reliability, 58(4), 611–618.
    [24]Tseng, S. T., & Peng, C.Y.(2004) Optimal burn-in policy by using an integrated Wiener process. IIE Transactions, 36(12), 1161-1170.
    [25]Tseng, S. T., & Tang, J. (2001). Optimal burn-in time for highly reliable products. International Journal of Industrial Engineering, 8(4), 329–338.
    [26]Tseng, S. T., Tang, J., and Ku, I. H. (2003). Determination of burn-in parameters and residual life assessment of highly reliable products. Naval Research Logistics, 50(1), 1-14.
    [27]Venturini, S., & Dominici, F. & Parmigiani, G. (2008). Gamma Shape Mixtures for Heavy-Tailed Distributions. The Annals of Applied Statistics, 2(2), 756-776.
    [28]Wu, S. & Xie, M. (2007). Classifying Weak, and Strong Components Using ROC Analysis With Application to Burn-In. IEEE Transactions on Reliability, 56(3), 552–561.
    [29]Ye, Z. S., Xie, M.,Tang, L.C.& Shen, Y. (2012). Degradation-Based Burn-In Planning Under Competing Risks.Technometrics, 54(2), 159-168.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE