簡易檢索 / 詳目顯示

研究生: 詹峻智
Jhan, Jyun-Jchin
論文名稱: 流體化床快速熱裂解系統建置和產物分析研究
system development and product analysis for the fluidized bed fast pyrolysis
指導教授: 王偉成
Wang, Wei-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 39
中文關鍵詞: 快速熱裂解流體化床稻殼生質油熱轉換生質燃料
外文關鍵詞: Fast pyrolysis, Fluidized bed, Bio-oil, Rice husk, Bio-fuel, Thermal processing
相關次數: 點閱:84下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著經濟的發展和人口快速成長,能源的需求日益增加,但傳統化石燃料會造成環境汙染,且在未來的幾年,將會日益減少。因而有再生能源的出現,像風能、太陽能、水力能、生質能,但一般的再生能源會受到地理環境或氣候的限制。生質能不受環境、氣候限制且具有方便運輸、儲存和低汙染的優點。是一個極具潛力的替代能源。本次研究建置流體化床系統,以生產生質油為主要目標,流體化床系統主要包含了進料器、流體化床反應爐、旋風集塵器及冷凝系統。藉由改變系統的反應溫度、進氣的流量及進料率,找到最大的生質油產量。本系統流體化床反應爐設計為直徑為80mm,高度為820mm。最小流化速度為0.1公尺/秒,實驗操作範圍為1.16至1.66倍的最小流化速度,所使用的生質料為稻殼,溫度控制在350℃到550℃間,進料率控制為每次21.33克到34.23克。實驗結果顯示,在溫度400-450℃,流量為每分鐘45公升,進料率控制為每次27.33克時,會有最大的生質油產率,為49.8%的產量
    。經由稻殼產出的生質油外觀為棕褐色,經由GC-MS的分析,成份包含了十九烷、十八烷、正十六烷酸和十八烷酸、…此外還發現稻殼產出的生質油具有低熱值和高含氧量、高硫量之特性。其中產物氣體經由GC-TCD分析,主要有二氧化碳、甲烷、氫氣及氮氣。

    In this study, both system development and experimental investigation were conducted for fluidized bed fast pyrolysis. The design of a fluidized bed pyrolysis system, including a fluidized bed reactor, a feeder, a cyclone and a condenser, was carried out in order to improve the system performance and efficiency. Rice husk was chosen as the feedstock based on its availability in Taiwan. The product distributions from fluidized bed pyrolysis were studied with varying temperature, carrier gas flow rate and biomass feeding. The results showed that the optimal experimental conditions for obtaining the maximum bio-oil yield were at the temperature between 400 ℃ and 450 ℃ , the flow rate of 45 L /min and biomass feeding of 21.3 g per inject time. The analysis of GC-MS indicated that the major components of bio-oil contain n-hexadecanoic acid, octadecaoic acid, 9-octadecenoic acid and decanoic acid. The element and property analysis of bio-oil demonstrated that the bio-oil has high oxygen content and low heating value. The analysis of GC-TCD showed that the major components of non-condensable gas are CO2, H2, CH4 and N2.

    Content 中文摘要 i Abstract ii Acknowledgement iii Content iv List of Tables vi List of Figures vii Chapter ⅠIntroduction 1 Chapter II Experimental methods 6 2.1 Feedstock 6 2.2 Pyrolysis system design 7 2.2.1 Design of the fluidized bed reactor 9 2.2.2 Design of the Feeder 13 2.2.3 Design of the Cyclone 17 2.2.4 Design of the Condenser 19 2.2.5 Setup of the filter and gas analyzing device 20 2.3 Experimental procedure 21 2.4 Product analysis 22 2.4.1 Calculation of mass balance 22 2.4.2 Bio-oil analysis 22 2.4.3 Gas product analysis 22 ChapterⅢ Results and discussion 24 3.1 The effect of temperature on product distributions 24 3.2 The effect of carrier gas flow rate on product distributions 26 3.3 The effect of biomass feeding on product distributions 28 3.4 Analysis of components and properties of produced bio-oil 30 Chapter IV Conclusion and Future work 34 References 36

    1. Demirbaş, A., Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 2001. 42(11): p. 1357-1378.
    2. Onay, O. and O.M. Kockar, Slow, fast and flash pyrolysis of rapeseed. Renewable Energy, 2003. 28(15): p. 2417-2433.
    3. Goyal, H., D. Seal, and R. Saxena, Bio-fuels from thermochemical conversion of renewable resources: a review. Renewable and sustainable energy reviews, 2008. 12(2): p. 504-517.
    4. Mohan, D., C.U. Pittman, and P.H. Steele, Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels, 2006. 20(3): p. 848-889.
    5. Zhang, Q., et al., Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 2007. 48(1): p. 87-92.
    6. Bridgwater, A.V., Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 2003. 91(2–3): p. 87-102.
    7. Ji-lu, Z., Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system. Journal of Analytical and Applied Pyrolysis, 2007. 80(1): p. 30-35.
    8. Heo, H.S., et al., Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresource technology, 2010. 101(1): p. S91-S96.
    9. Islam, M.N., R. Zailani, and F.N. Ani, Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and itscharacterisation. Renewable Energy, 1999. 17(1): p. 73-84.
    10. Liu, R., C. Deng, and J. Wang, Fast pyrolysis of corn straw for bio-oil production in a bench-scale fluidized bed reactor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2009. 32(1): p. 10-19.
    11. Luo, Z., et al., Research on biomass fast pyrolysis for liquid fuel. Biomass and Bioenergy, 2004. 26(5): p. 455-462.
    12. Park, H.J., et al., Pyrolysis characteristics of Oriental white oak: kinetic study and fast pyrolysis in a fluidized bed with an improved reaction system. Fuel Processing Technology, 2009. 90(2): p. 186-195.
    13. Zhang, H., et al., Biomass fast pyrolysis in a fluidized bed reactor under N 2, CO 2, CO, CH 4 and H 2 atmospheres. Bioresource technology, 2011. 102(5): p. 4258-4264.
    14. Luo, Z., S. Wang, and K. Cen, A model of wood flash pyrolysis in fluidized bed reactor. Renewable Energy, 2005. 30(3): p. 377-392.
    15. Zhang, H., et al., Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresource Technology, 2009. 100(3): p. 1428-1434.
    16. Shemfe, M.B., S. Gu, and P. Ranganathan, Techno-economic performance analysis of biofuel production and miniature electric power generation from biomass fast pyrolysis and bio-oil upgrading. Fuel, 2015. 143: p. 361-372.
    17. Tewfik, S.R., et al., Bio-oil from rice straw by pyrolysis: experimental and techno-economic investigations. J Am Sci, 2011. 7.
    18. Do, T.X., Y.-i. Lim, and H. Yeo, Techno-economic analysis of biooil production process from palm empty fruit bunches. Energy Conversion and Management, 2014. 80: p. 525-534.
    19. Boateng, A.A., et al., Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production. Industrial & Engineering Chemistry Research, 2007. 46(7): p. 1891-1897.
    20. Dai, X., et al., Pyrolysis of waste tires in a circulating fluidized-bed reactor. Energy, 2001. 26(4): p. 385-399.
    21. Lu, Z., Pyrolysis oil from fast pyrolysis of maize stalks. J. Anal. Appl. Pyrolysis, 2008. 83: p. 205-212.
    22. Zheng, J.-l., W.-m. Yi, and N.-n. Wang, Bio-oil production from cotton stalk. Energy Conversion and Management, 2008. 49(6): p. 1724-1730.
    23. DeSisto, W.J., et al., Fast pyrolysis of pine sawdust in a fluidized-bed reactor. Energy & Fuels, 2010. 24(4): p. 2642-2651.
    24. Xiao, G., et al., Fluidized-bed pyrolysis of waste bamboo. Journal of Zhejiang University Science A, 2007. 8(9): p. 1495-1499.
    25. Xu, R., et al., Flash pyrolysis of grape residues into biofuel in a bubbling fluid bed. Journal of Analytical and Applied Pyrolysis, 2009. 86(1): p. 58-65.
    26. Duman, G., et al., The slow and fast pyrolysis of cherry seed. Bioresource Technology, 2011. 102(2): p. 1869-1878.
    27. Bok, J.P., et al., Fast pyrolysis of Miscanthus sinensis in fluidized bed reactors: characteristics of product yields and biocrude oil quality. Energy, 2013. 60: p. 44-52.
    28. Bok, J.P., et al., Fast pyrolysis of coffee grounds: Characteristics of product yields and biocrude oil quality. Energy, 2012. 47(1): p. 17-24.
    29. Ly, H.V., et al., Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production. Energy, 2015. 93: p. 1436-1446.
    30. Montoya, J., et al., Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: An experimental study. Journal of Analytical and Applied Pyrolysis, 2015. 112: p. 379-387.
    31. Park, H.J., et al., Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch. Chemical Engineering Journal, 2008. 143(1): p. 124-132.
    32. Pattiya, A., Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor. Bioresource Technology, 2011. 102(2): p. 1959-1967.
    33. Karri, S.B.R. and T.M. Knowlton, 4 - Gas Distributor and Plenum Design in Fluidized Beds, in Fluidization, Solids Handling, and Processing, W.-C. Yang, Editor. 1998, William Andrew Publishing: Westwood, NJ. p. 209-235.
    34. Chen, J.C., 3 - Heat Transfer in Fluidized Beds, in Fluidization, Solids Handling, and Processing, W.-C. Yang, Editor. 1998, William Andrew Publishing: Westwood, NJ. p. 153-208.
    35. Heo, H.S., et al., Fast pyrolysis of rice husk under different reaction conditions. Journal of Industrial and Engineering Chemistry, 2010. 16(1): p. 27-31.
    36. Depypere, F., J.G. Pieters, and K. Dewettinck, CFD analysis of air distribution in fluidised bed equipment. Powder Technology, 2004. 145(3): p. 176-189.
    37. Knowlton, T.M., 2 - Pressure and Temperature Effects in Fluid-Particle Systems, in Fluidization, Solids Handling, and Processing, W.-C. Yang, Editor. 1998, William Andrew Publishing: Westwood, NJ. p. 111-152.
    38. Luo, Z., et al., Effect of gas distributor on performance of dense phase high density fluidized bed for separation. International Journal of Mineral Processing, 2004. 74(1–4): p. 337-341.
    39. Energy, G., ENGINEERING AND GINNING. Cotton Science. 40-51.
    40. Huang, A.-N., et al., Production and separation of rice husk pyrolysis bio-oils from a fractional distillation column connected fluidized bed reactor. Powder Technology.

    下載圖示 校內:2019-01-26公開
    校外:2019-01-26公開
    QR CODE