簡易檢索 / 詳目顯示

研究生: 包力
Pao, Li
論文名稱: 低合金鋼與不銹鋼在鹽酸溶液中之腐蝕及其抑制之研究
Corrosion and their inhibition of low alloy steels and stainless steels in HCl solution
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 125
中文關鍵詞: 鹽酸溶液腐蝕含銅低合金鋼316L不銹鋼2205雙相不銹鋼腐蝕抑制劑
外文關鍵詞: HCl solution corrosion, copper alloyed steel, 316L stainless steel, 2205 stainless steel, corrosion inhibitor
相關次數: 點閱:195下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在煉油產業中,常壓蒸餾單元(CDU)的重要結構經常遭受到鹽酸露點腐蝕的侵害。為了降低鹽酸腐蝕所造成的傷害,選用適合的材料作為設備管線是最好的防蝕方法之一。本研究將探討四種不同的鋼材於鹽酸中之腐蝕情形,以提供CDU選材時的參考,分別為ASTM-A285-C碳鋼、Acr-Ten耐候鋼(中鋼公司生產)、316L不銹鋼以及2205雙相不銹鋼。此外也將分析三種實際應用在CDU之腐蝕抑制劑對於兩種低合金鋼在鹽酸腐蝕的抑制效果。整體實驗將分為電化學試驗與浸泡試驗兩大部分。
    以電化學試驗量測四種鋼在不同溫度與不同濃度之環境下的極化曲線,可以看到四種鋼之腐蝕速率皆隨鹽酸濃度及溫度而上升。其中ASTM-A285-C碳鋼之濃度對腐蝕速率關係符合反應速率方程式r = kCn,而Acr-Ten耐候鋼之濃度對腐蝕速率的關係則符合修改後之反應速率方程式r = keBC。浸泡試驗以四種鋼材在室溫下不同濃度為條件進行,浸泡試驗結束後之試片以SEM觀察其表面腐蝕形貌,並輔以EDS分析腐蝕產物。碳鋼與低合金鋼以FTIR分析其表面產物鍵結。結果顯示ASTM-A285-C碳鋼之表面主要形成γ-FeOOH以及β-FeOOH,Acr-Ten耐候鋼的表面會有一層較緻密的氧化層,其主要為α-FeOOH與γ-FeOOH,並有Cu元素分布於表面。不銹鋼的腐蝕,綜合電化學試驗與浸泡試驗結果顯示,316L不銹鋼在低濃度鹽酸溶液中容易發生孔蝕現象,在高濃度下則為均勻腐蝕,且其表面之氧化物含有較高的Mo含量。2205不銹鋼在低濃度鹽酸水溶液中時並沒有觀察到孔蝕現象;在1 wt%鹽酸水溶液中,其呈現沃斯田體相優先的選擇性腐蝕;而在10 wt%鹽酸水溶液中,則呈現肥粒體相優先的選擇性腐蝕。
    以電化學方法分析三種添加劑(編號A、B及C)於鹽酸水溶液中之抗腐蝕效果,發現此三種添加劑對於ASTM-A285-C碳鋼均會抑制其陰極反應,抑制效率為C ≈ B > A。對於Acr-Ten鋼而言,此三種添加劑同樣會對其產生陰極抑制的反應,然而浸泡試驗結果顯示三種添加劑僅有B添加劑能有明顯抑制效果,C添加劑甚至導致腐蝕速率上升。浸泡試驗後以FTIR分析兩鋼種表面產物鍵結,結果發現在ASTM-A285-C碳鋼表面,B添加劑之吸附效果最佳,A與C添加劑則幾乎不會吸附。而Acr-Ten鋼表面則三種添加劑均不會吸附。

    In petrochemical industry, crude distillation unit (CDU) suffered from HCl dew point corrosion frequently. To cut down the damage caused by HCl dew point corrosion, replace those pipe lines with more suitable material is the most effective anti-corrosion method. In this research, corrosion behavior of four kinds of steels in HCl solution has been investigated, they are ASTM A285-C carbon steel, Acr-Ten weathering steel, 316L stainless steel and 2205 duplex stainless steel. Electrochemical polarization test and immersion test were introduced in this experiment. The result shows that Acr-Ten steel has better corrosion resistance in HCl solution than carbon steel due to formation of Cu rich oxide layer on its surface. On the other hand, for stainless steels, distinct behavior showed when they were immersed in different concentration of HCl solution. 316L stainless steel shows pitting corrosion in low HCl concentration, and general corrosion in high HCl concentration. However, 2205 stainless steel shows no corrosion in low HCl concentration, and selective dissolution in high HCl concentration.

    摘要…………………………………………………………..………………I Extended Abstract…………………………………………………………..III 致謝...………………………….…...……….....……………....………….XV 總目錄…………………………………………………….….………….XVII 表目錄………………………………………………………………...…..XX 圖目錄…………………………………………………………...……….XXI 一、前言……………………………………………………………………...1 二、文獻回顧………………………………………………………………...3 2.1 常壓蒸餾單元中之腐蝕及其防治………………………………...3 2.2 鐵基材料在鹽酸溶液中之腐蝕…………………………………...7 2.2.1 碳鋼在鹽酸溶液中之腐蝕………………………………….7 2.2.2 耐候鋼之腐蝕……………………………………………...12 2.2.3 300系沃斯田鐵不銹鋼在鹽酸溶液中之腐蝕…………….14 2.2.4 雙相不銹鋼在鹽酸溶液中之腐蝕………………………...16 2.3 以電化學技術評估腐蝕速率與耐蝕性質……………………….18 2.3.1 電化學電極學……………………………………………...18 2.3.2 以塔弗外插法來分析極化曲線……………....…………...22 2.4 腐蝕抑制劑之種類及其在CDU之應用………………………..26 三、實驗方法………………………………………………………….......35 3.1 實驗材料及環境…………………………........………………….35 3.2 動電位極化曲線試驗…………………………………………….35 3.3 浸泡試驗………………………………………………………….38 3.4 浸泡試驗試片表面腐蝕產物觀察與分析……………………….38 四、實驗結果與討論…………………………………………………..…...45 4.1 碳鋼、耐候鋼與不銹鋼在鹽酸溶液中之腐蝕現象…………….45 4.1.1 極化曲線試驗及腐蝕速率量測與分析…………………...45 4.1.1.1 濃度對極化曲線的影響…………………………….45 4.1.1.2 溫度對極化曲線的影響…………………………….50 4.1.1.3 腐蝕速率的計算與分析…………………………….51 4.1.2 浸泡試驗結果……………………………………………...53 4.1.2.1 浸泡試驗之腐蝕速率……………………………….53 4.1.2.2 以SEM 觀察腐蝕形貌與EDS分析腐蝕產物結果..54 4.1.2.3 以FTIR分析碳鋼與耐候鋼表面腐蝕產物結果........56 4.1.3 不同鋼種於鹽酸溶液中之腐蝕現象探討……………..….57 4.1.3.1 碳鋼與耐候鋼於鹽酸溶液中之腐蝕現象探討......... 57 4.1.3.2 不銹鋼於鹽酸溶液中之腐蝕現象討論..................... 58 4.2 添加劑對碳鋼與耐候鋼在鹽酸溶液中腐蝕之影響….................61 4.2.1 添加劑對於碳鋼與耐候鋼之電化學行為影響………..….61 4.2.2 浸泡試驗之腐蝕速率與極化曲線試驗之比較 .................61 4.2.3 以SEM、EDS與FTIR分析腐蝕試片表面................…….62 五、結論………………………………………………………………..….119 六、參考文獻…………………………………………………………..….120

    1. 柯偉、陳進偉,煉油工業中腐蝕研究的進展,石油化工腐蝕與防護,Vol. 14, pp. 1-11, 1997.
    2. 朱岳麟、周健、熊常健、馬志鋒、劉中生,煉油設備腐蝕與防護技術新進展,石油化工設備,Vol. 31, pp. 14-16, 2002.
    3. Palash Kumar Bhowmik, MD. Emam Hossain, and Jubair Ahmed Shamim, Corrosion And Its Control In Crude Oil Refining Process, in International Mechanical Engineering Conference, 2012.
    4. Sankara Papavinasam, Corrosion Control in the Oil and Gas Industry, Elsevier Science Ltd., p. 27, 2013.
    5. A. Bagdasarian, J. Feather, B. Hull, R. Stephenson, and R. Strong, Crude unit corrosion and corrosion control, in The NACE International Annual Conference, 1996.
    6. B. Chambers, S. Srinivasan, K.M. Yap, and M. Yunovich, Corrosion in Crude Distillation Unit Overhead Operations: A Comprehensive Review, in The NACE International Annual Conference, 2011.
    7. 趙敏、康強利、馬紅傑、張郡,煉油廠常減壓蒸餾裝置腐蝕防護現狀,腐蝕科學與防護技術,Vol. 24, 2012.
    8. 程光旭、馬貞欽、胡海軍、盛剛,常減壓裝置塔頂低溫系統露點腐蝕及銨鹽沉積研究,石油化工設備,Vol. 43, pp. 1, 2014.
    9. 郭慶舉、鞏增利,常減壓塔頂腐蝕與中和劑的選擇,石油化工腐蝕與防護,Vol. 30, pp. 30, 2013.
    10. 段永鋒、于鳳昌、崔中強、孫亮、侯豔宏,蒸餾裝置塔頂系統露點腐蝕與控制,石油化工腐蝕與防護,Vol. 31, pp. 29, 2014.
    11. 符長軍,蒸餾裝置塔頂冷凝系統腐蝕及對策,石油化工腐蝕與防護,Vol. 29, 2012.
    12. D. R. Holmes eds., Dewpoint corrosion, CH.2, 1985, pp. 17-34, 1985.
    13. S. Santhana Prabha, R. Joseph Rathish, R. Dorothy, G.Brindha, M. Pandiarajan, Abdulameed Al-Hashem, and S.Rajendran, Corrosion problems in petroleum industry and their solution, European Chemical Bulletin, Vol. 3, pp. 300-307, 2014.
    14. A. Usami, M. Okushima, S. Sakamoto, S. Nishimura, T. Kusunoki, and K. Kojima, New S-TENTM1: An Innovative Acid-Resistant Low-Alloy Steel, Nippon Steel Technical Report, Vol. 90, pp. 25-32, 2004.
    15. Liang Zhiyuana and Zhao Qinxin, Research on Dew point Corrosion of Materials, Applied Mechanics and Materials, Vol. 281, pp. 441-447, 2013.
    16. 朱義東、楊延格、韋德福、于寶興、陳瑞國、張春豔、王勇、張濤,不銹鋼鹽酸露點腐蝕行為的原位研究,腐蝕科學與防護技術,Vol. 28, 2016.
    17. 常季、陳吉、黃澳、宋見、劉元福,2205雙相不銹鋼硫酸露點腐蝕性能的研究,北京石油化工學院學報,Vol. 23, 2015.
    18. J. E. Truman, The influence of chloride content, ph and temperature of test solution on the occurrence of stress corrosion cracking with austenitic stainless steel, Corrosion Science, Vol. 17, pp. 737-746, 1977.
    19. Rokuro Nishimura, The effect of potential on stress corrosion cracking of type 316 and type 310 austenitic stainless steels, Corrosion Science, Vol. 34, pp. 1463-1473s, 1993.
    20. Wen-Ta Tsai and Ming-Shan Chen, Stress corrosion cracking behavior of 2205 duplex stainless steel in concentrated NaCl solution, Corrosion Science, Vol. 42, pp. 545-559, 2000.
    21. Wen-Ta Tsai and Shyan-Liang Chou, Environmentally assisted cracking behavior of duplex stainless steel in concentrated sodium chloride solution, Corrosion Science, Vol. 42, pp. 1741-1762, 2000.
    22. I-Hsuang Lo and Wen-Ta Tsai, EVect of selective dissolution on fatigue crack initiation in 2205 duplex stainless steel, Corrosion Science, Vol. 49, pp. 1847–1861, 2007.
    23. Viswanathan S. Saji, Contemporary Developments in Corrosion Inhibitors - Review of Patents, Recent Patents on Corrosion Science, Vol. 1, pp. 63-71, 2011.
    24. Mars G. Fontana and Norbert D. Greene, Corrosion Engineering, third ed., McGraw-Hill, 1987.
    25. P. B. Mathur and T. Vasudevan, Reaction rate studies for the corrosion of metals in acids—I, Iron in mineral acids, Corrosion, Vol. 38, pp. 171-178, 1982.
    26. Anees A. Khadom, Aprael S. Yaro, Abdul Amir H Kadum, Ahmed S. Altaie, and Ahmed Y. Musa, The effect of temperature and acid concentration on corrosion of low carbon steel in hydrochloric acid media, American Journal of Applied Sciences, Vol. 6, pp. 1403-1409, 2009.
    27. L. Felloni, The effect of pH on the electrochemicalbehaviour of iron in hydrochloric acid, Corrosion Science, Vol. 8, pp. 133-148, 1968.
    28. Robert J. Chin and Ken Nobe, Electrodissolution Kinetics of Iron in Chloride Solutions III . Acidic Solutions, journal of The Electrochemical Society, Vol. 119, pp. 1457-1461, 1972.
    29. H. C. Kuo and Ken Nobe, Electrodissolution Kinetics of Iron in Chloride Solutions VI . Concentrated Acidic Solutions, journal of The Electrochemical Society, Vol. 125, pp. 853-860, 1978.
    30. E. McCafferty and Norman Hackerman, Kinetics of Iron Corrosion in Concentrated Acidic Chloride Solutions, journal of The Electrochemical Society, Vol. 119, pp. 999-1009, 1972.
    31. N.A. Darwish, F. Hilbert, W.J. Lorenz, and H. Rosswag, The influence of chloride ions on the kinetics of iron dissolution, Electrochimica Acta, Vol. 18, pp. 421-425, 1973.
    32. Ehteram A. Noor and Aisha H. Al-Moubaraki, Corrosion Behavior of Mild Steel in Hydrochloric Acid Solutions, International Journal of Electrochemical Science, Vol. 3, pp. 806 - 818, 2008.
    33. 劉國超、董俊華、韓恩厚、柯偉,耐候鋼鏽層研究進展,腐蝕科學與防護技術,Vol. 18, pp. 268-272, 2006.
    34. 王傳雅與戚正風,耐候鋼的化學成分和性能,特殊鋼,Vol. 1, pp. 13-19, 1997.
    35. M. Stratmann, K. Bohnenkamp, and T. Ramchandran, The influence of copper upon the atmospheric corrosion of iron, Corrosion Science, Vol. 27, pp. 905-926, 1987.
    36. 于敬敦、吳幼林、崔秀嶺、張陸,08CuPVRE鋼耐大氣腐蝕的機理,中國腐蝕與防護學報,Vol. 14, pp. 82-86, 1994.
    37. H. Kihira, S. Ito, and T. Murata, The behavior of phosphorous during passivation of weathering steel by protective patina formation, corrosion Science, Vol. 31, pp. 383-388, 1990.
    38. T. Kamimura and M. Stratmann, The influence of chromium on the atmospheric corrosion of steel, Corrosion Science, Vol. 43, pp. 429-447, 2001.
    39. 張全成、王建軍、吳建生、鄭文龍、陳家光、李愛柏,鏽層離子選擇性對耐候鋼抗海洋性大氣腐蝕性能的影響,金屬學報,Vol. 2, pp. 193-196, 2001.
    40. T. Nishimura, H. Katayama, K. Noda, and T. Kodama, Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments, Corrosion Science, Vol. 42, pp. 1611-1621, 2000.
    41. S.J. Oh, D.C. Cook, and H.E. Townsend, Atmospheric corrosion of different steels in marine, rural and industrial environments, Corrosion Science, Vol. 41, pp. 1687-1702, 1999.
    42. D.P. Le, W.S. Ji, J.G. Kim, K.J. Jeong, and S.H. Lee, Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system, Corrosion Science, Vol. 50, 2008.
    43. 張瑗、紀元、朱逢吾、梁成廣、肖紀美,抗硫酸露點腐蝕鋼的表面研究,中國腐蝕與防護學報,Vol. 15, 1995.
    44. 葉先祥、周成、張聰,新型耐硫酸鹽酸露點腐蝕鋼的性能研究,腐蝕科學與防護技術,Vol. 27, pp. 135-140, 2015.
    45. J.H. Hong, S.H. Lee, J.G. Kim, and J.B. Yoon, Corrosion behaviour of copper containing low alloy steels in sulphuric acid, Corrosion Science, Vol. 54, pp. 174-182, 2012.
    46. I. Olefjord and B. O. Elfstrom, The Composition of the Surface during Passivation of Stainless Steels, Corrosion, Vol. 38, 1982.
    47. Y. Tsutsumi, A. Nishikata, and T. Tsuru, Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions, Corrosion science, Vol. 49, pp. 1394-1407, 2007.
    48. A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, and E. Matykina, Pitting corrosion behaviour of austenitic stainless steels - combining effects of Mn and Mo additions, Corrosion Science, Vol. 50, 2008.
    49. R. Ke and R. Alkire, Surface Analysis of Corrosion Pits Initiated at MnS Inclusions in 304 Stainless Steel, journal of The Electrochemical Society, Vol. 139, pp. 1573-1580, 1992
    50. Mary P. Ryan, David E. Williams, Richard J. Chater, Bernie M. Hutton, and David S. McPhail, Why stainless steel corrodes, Nature, Vol. 415, pp. 770-774, 2002.
    51. K. Sugimoto and Y. Sawada, The Role of Molybdenum Additions to Austenitic Stainless Steel in the Inhibition of Pitting in Acid Chloride Solutions, Corrosion Science, Vol. 17, 1977.
    52. RC Newman, The dissolution and passivation kinetics of stainless alloys containing molybdenum—1. Coulometric studies of Fe-Cr and Fe-Cr-Mo alloys, Corrosion Science, Vol. 25, pp. 331-339, 1985.
    53. C.A. Loto, A.P.I. Popoola, O.S. Fayomi, and R.T. Loto, Corrosion Polarization Behaviour of Type 316 Stainless Steel in Strong Acids and Acid Chlorides, International Journal of Electrochemical Science, Vol. 7, pp. 3787 - 3797, 2012.
    54. A.U. Malik, P.C.M. Kutty, N.A. Siddiqi, and I.N. Andijani, The influence of pH and chloride concentration on the corrosion behaviour of AISI 316L steel in aqueous solutions, Corrosion Science, Vol. 33, pp. 1809-1827, 1992.
    55. Z Wei, J Laizhu, H Jincheng, and S Hongmei, Study of mechanical and corrosion properties of a Fe–21.4Cr–6Mn–1.5Ni–0.24N–0.6Mo duplex stainless steel, Materials Science and Engineering: A, Vol. 497, pp. 501-504, 2008.
    56. L.F. Garfias-Mesias, J.M. Sykes, and C.D.S. Tuck, The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions, Corrosion Science, Vol. 38, pp. 1319-1330, 1996.
    57. HY Ha, MH Jang, TH Lee, and J Moon, Interpretation of the relation between ferrite fraction and pitting corrosion resistance of commercial 2205 duplex stainless steel, Corrosion Science, Vol. 89, pp. 154-162, 2014.
    58. W.T. Tsai, K.M. Tsai, C. Lin, and Y. FU, Selective Corrosion in Duplex Stainless Steel, 電化學 Electrochemistry, Vol. 9, pp. 170-176, 2003.
    59. John O'M. Bockris, Amulya K. N. Reddy, and Maria Gamboa-Aldeco, Modern Electrochemistry 2A. 2 ed. 2000: Springer US.
    60. R. Winston Revie and Herbert H. Uhlig, Corrosion and Corrosion Control, 4th Edition., A JOHN WILEY & SONS, INC., 2008.
    61. M. Stern and A. L. Geary, Electrochemical Polarization I . A Theoretical Analysis of the Shape of Polarization Curves, journal of The Electrochemical Society, Vol. 104, pp. 56-63, 1957.
    62. A.A. El-Feki and G.W. Walter, Corrosion rate measurements under conditions of mixed charge transfer plus diffusion control including the cathodic metal ion deposition partial reaction, Corrosion Science, Vol. 42, pp. 1055-1070, 2000.
    63. E McCafferty, Validation of corrosion rates measured by the Tafel extrapolation method, Corrosion Science, Vol. 47, pp. 3202-3215, 2005.
    64. E. Poorqasemi, O. Abootalebi, M. Peikari, and F. Haqdar, Investigating accuracy of the Tafel extrapolation method in HCl solutions, Corrosion Science, Vol. 51, pp. 1043-1054, 2009.
    65. Z. A. Foroulis, Corrosion and corrosion inhibition in the petroleum industry, Materials and Corrosion, Vol. 33, 1982.
    66. 康強利、郭興建、趙敏、孔朝輝,緩蝕劑在我國煉油廠中的應用及發展,腐蝕科學與防護技術,Vol. 20, 2008.
    67. Camila G. Dariva and Alexandre F. Galio, Developments in corrosion protection, InTech, CH. 16, 2014.
    68. B Sanyal, Organic compounds as corrosion inhibitors in different environments — A review, Progress in Organic Coatings, Vol. 9, pp. 165-236, 1981.
    69. Viswanathan S. Saji, A Review on Recent Patents in Corrosion Inhibitors, Recent Patents on Corrosion Science, Vol. 2, pp. 6-12, 2010.
    70. S. W. Dean Jr., R. Derby, and G. Von Dem Bussche, Inhibitor types, Materials performance, Vol. 20, pp. 47-51, 1981.
    71. A. Raman, B. Kuban, and A. Razvan, The application of infrared spectroscopy to the study of atmospheric rust systems—I. Standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products, Corrosion Science, Vol. 32, pp. 1295-1306, 1991.
    72. B. Weckler and H.D. Lutz, Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the iron oxide hydroxides goethite (α), akaganéite (β), lepidocrocite (γ), and feroxyhite (δ), European Journal of Solid State and Inorganic Chemistry, Vol. 35, pp. 531-544, 1998.
    73. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, and T. Misawa, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corrosion Science, Vol. 36, pp. 283-299, 1994.
    74. T. Misawa, K. Asami, K. Hashimoto, and S. Shimodaira, The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel, Corrosion Science, Vol. 14, pp. 279-289, 1974.
    75. Y. S. Choi and J. G. Kim, Aqueous Corrosion Behavior of Weathering Steel and Carbon Steel in Acid-Chloride Environments, Corrosion, Vol. 56, 2000.
    76. Young-Wook Jang, Ji-Hyun Hong, and Jung-Gu Kim, Effects of Copper on the Corrosion Properties of Low-Alloy Steel in an Acid-Chloride Environment, Metals and Materials International, Vol. 15, pp. 623-629, 2009.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE