簡易檢索 / 詳目顯示

研究生: 陳彥廷
Chen, Yen-Ting
論文名稱: 以模型為基礎之電腦手指連續運動影像分析系統
Model-Based Video Analysis System for Articulated Finger Motion
指導教授: 孫永年
Sun, Yung-Nien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 92
中文關鍵詞: 追蹤手部運動學螢光攝影
外文關鍵詞: fluoroscopy, particle filter, hand, kinematics, tracking
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  三維手部動作的分析與量測對手部疾病之診斷與治療能提供很大的幫助。在臨床上,醫師以專業經驗指定手部動作與進行靜態的手指角度量測;至於手部動態運動分析的研究,目前通常利用受試者在指定動作下之螢光攝影影像進行參數分析,而缺乏整體動態的三維模型以提供參考比對。本論文之主要目標是以研究如何建立患者手指部位之三維模型以及量測其連續運動;經由低成本攝影機之連續動態影像,利用電腦視覺技術建立三維虛擬手指模型,發展一套整合之三維手指動作分析與量測系統,取代昂貴的運動分析設備與提供可靠的手部動態資訊以協助外科醫師對患者病灶區域進行臨床診斷、治療規劃與術後評估。

     我們利用電腦視覺的三維資訊重構技術與相機校準技術來計算標記點在空間中之三維資訊,然後依據手部運動學模型去計算相關指間角度值與手指長度值之參數,同時利用基本的立體幾何模型建構虛擬手掌三維動態模型。擁有上述之靜態與動態虛擬手掌模型後,我們結合影像資訊與三維標記點位置,採用創新的Marker-guided particle filter演算法實現手部運動的動態追蹤,並可以即時計算出所有的最佳手部參數值。為了提升模型的精確性,本論文最後會將MRI所得到的三維手骨實際放入所建構之虛擬指塊模型中;如此,我們可以交替驗證手傷患者在動作時之骨骼之動作狀況,量測出動態運動參數或評估相關復健情況,同時對手指病變也可以用定性與定量方式做出客觀分析與診斷。

     由實驗顯示,本論文所提的系統在運算速度和精準度上都有不錯的結果,可對表皮標記點資訊做補償,這是目前使用的運動分析系統無法做到的。而且本方法僅需市售的數位相機,與醫院昂貴的運動分析系統相比,成本低廉且架設簡單,非常適合讓醫生對手指病變作一個客觀的分析和評估。

     3D motion analysis and measurement provides valuable information to medical doctors for diagnosis and treatment of hand diseases. However, at present, researchers usually use the fluoroscope images taken from tester under several specific postures to perform hand motion analysis, which lacks of a global dynamic model for comparison and is not a real 3D motion analysis. The main goal of this research focuses on constructing the real 3D human hand model and measuring its successive motion from video. We utilize the computer vision techniques to build 3D virtual hand model with image sequences from a video camera and control an integrated 3D hand analysis and measurement system, which will help surgeons for clinical diagnosis, therapy planning, and post-surgery evaluation.

     In the proposed system, markers are placed on joint regions of tester’s fingers, and then videos of finger motion under given gestures are captured. After obtaining the data, we calculate the 3D information of the markers, and utilize image available information to compute the angle and length parameters according to the hand kinematical model. The 3D dynamic virtual hand model is represented by the components of cylinder and sphere. With dynamic virtual hand model, we can measure the dynamic motion parameters, evaluate the recovery progress, and perform analysis and diagnosis qualitatively and quantitatively for hand diseases.

     Experimental results show that the proposed method reduces the computation cost, and keeps the accuracy of estimated parameters still satisfactory. Although the conditional motion analysis system is precisely calibrated, it only provides the information of tracked markers which can hardly reveal the true kinematics of human fingers. Besides, it can not capture finger motion with fluoroscopy simultaneously due to technical limitation. In addition to marker prior information, our system integrates image and shape information to rectify model parameters, and show its great portability to work with fluoroscopy. Our system requires only two common digital cameras that makes it a low-cost solution for finger diseases diagnosis and finger kinematics evaluation.

    第1章、 序論 1 1-1. 研究動機 1 1-2. 相關研究 4 1-3. 論文組織 10 第2章、 系統架構 11 2-1. 系統配備 11 2-1-1 電腦等級 11 2-1-2 兩台同步攝影機 11 2-1-3 相機的校準 11 2-2. 受測者的前置作業 15 2-2-1 標記點的黏貼 15 2-2-2 手掌的固定 16 2-3. 系統架設簡述 16 2-4. 系統流程圖 17 第3章、 影像前處理 19 3-1. 影像形變校正 19 3-2. 手指前景的分割 22 3-3. 標記點中心的偵測 24 3-4. 標記點中心的追蹤 25 3-5. 手指輪廓的擷取 27 3-6. 影像資訊的應用 28 第4章、 手指模型參數的追蹤 29 4-1. 虛擬三維手指模型簡介 29 4-2. 從標記點得到的三維資訊 32 4-3. 從標記點初始化的模型參數 33 4-3-1 骨節座標系的定義 33 4-3-2 求得初始化的參數 36 4-4. 整合標記點資訊的粒子濾波器 39 4-4-1 傳統粒子濾波器的介紹 39 4-4-2 考慮標記點資訊的粒子濾波器 39 4-4-3 Importance Density的選擇 42 4-4-4 重新取樣(Resample) 45 4-4-5 Weighting Function的定義 46 4-4-6 標記點中心的運用 49 4-4-7 多台相機資訊的整合 50 4-4-8 演算法的流程 51 第5章、 實驗設計與結果討論 52 5-1. 實驗環境 52 5-2. 受測者的手指動作 53 5-3. 驗證實驗的設計 54 5-3-2 相機校正 61 5-4. 驗證實驗步驟 62 5-4-1 螢光投影平面座標系的取得 62 5-4-2 動態螢光影像和相機的同步攝影 63 5-4-3 相機影像與螢光影像的對應 65 5-5. 驗證實驗的結果 66 5-5-1 實驗數據的分析與討論 66 5-5-2 實驗結果圖 75 5-6. Marker-Guided Particle Filtering和Classic Particle Filtering的比較 77 5-6-1 拇指旋轉(circumduction) 77 5-6-2 食指彎曲(flexion/extension) 80 5-6-3 粒子數對運算速度與精準度的影響 82 第6章、 結論與未來展望 85 6-1. 結論 85 6-2. 未來展望 87

    [1]http://www.szote.u-szeged.hu/Radiology/Anatomy/skeleton/hand1.htm
    [2]Li-Chieh Kuo, William P. Cooney III, Mineo Oyama, Kenton R. Kaufman, Fong-Chin Su, Kai-Nan An , “Feasibility of using surface markers for assessing motion of the thumb trapeziometacarpal joint,” Clinical Biomechanics , 18(6):558-63 ,2003.
    [3]P. Cerveri, N. Lopomo, A. Pedotti, and G. Ferrigno, “Derivation of centers and axes of
    rotation for wrist and fingers in a hand kinematic model: methods and reliability
    results,” Annals of Biomedical Engineering, vol. 33, no. 3, pp. 402-412, March 2005.
    [4]C.-C. Lien, and C.-L Huang, “Model-based articulated hand motion tracking for gesture
    recognition,” Image and Vision Computing, vol. 16, iss. 2, pp. 121-134, February 1998.
    [5]X. Zhang, S.-W. Lee and P. Braido, “Determining finger segmental centers of rotation in flexion–extension based on surface markers measurement,” Journal of Biomechanics, vol. 36, iss. 8, pp. 1097-1102, August 2003.
    [6]G.S. Rash, P.P. Belliappa, M.P. Wachowiak, N.N. Somia, and A. Gupta, “A demonstration of the validity of a 3-D video motion analysis method for measuring finger flexion and extension,” Journal of Biomechanics, vol. 32, iss. 12, pp. 1337-1341, December 1999.
    [7]L.-C. Kuo, F.-C. Su, H.-Y. Chiu, and C.-Y. Yu, “Feasibility of using a video-based motion analysis system for measuring thumb kinematics,” Journal of Biomechanics, vol. 35, iss. 11, pp. 1499-1506, November 2002.
    [8]F.-C. Su, L.-C. Kuo, H.-Y. Chiu, and H.-Y. Hsu, “The validity of using a video-based motion analysis system for measuring maximal area of fingertip motion and angular variation,” Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, vol. 216, no. 4, pp. 257-263, July 2002.
    [9]F.-C. Su, L.-C. Kuo, H.-Y. Chiu, and M.-J. Chen-Sea, “Video-computer quantitative evaluation of thumb function using workspace of the thumb,” Journal of Biomechanics, vol. 36, iss. 7, pp. 937-942, July 2003.
    [10]http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html
    [11]Arulampalam, M.S. Maskell, S. Gordon, N. Clapp, T. ,“A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking”, Signal Processing, IEEE Transactions , vol. 50, iss.2, pp. 174-188, Feb 2002
    [12]J.J.-L. Wang, and S. Singh, “Video analysis of human dynamics—a survey,” Real-Time Imaging, vol. 9, iss. 5, pp. 320-345, October 2003.
    [13]J. Lin, Y. Wu, and T.S. Huang, “Modeling the constraints of human hand motion,” in Proc. of IEEE Human Motion Workshop, 2000, pp. 121-126.
    [14]J. Lin, Y. Wu, and T.S. Huang, “Modeling the natural hand motion constraints,” in Proc. of ARL Federated Laboratory 5th Annual Symposium, 2001. pp. 105-110.
    [15]Y. Wu, J. Lin, and T.S. Huang, “Capturing natural hand articulation,” in Proc. of IEEE Int'l Conf. on Computer Vision, 2001, Vol II, pp. 426-432.
    [16]J. Lin, Y. Wu, and T.S. Huang, “Capturing human hand motion in image sequences,” in Proc. of IEEE Workshop on Motion and Video Computing, 2002, pp. 99-104.
    [17]Bray, M., Koller-Meier, E., and Van Gool, L., “Smart particle filtering for 3D hand tracking”, . Int. Conf. on Automatic Face and Gesture Recognition, 2004, pp. 675–680
    [18]J. Deutscher, A. Blake, and I. Reid, “Articulated Body Motion Capture by Annealed Particle Filtering”, Proc. Conf. Computer Vision and Pattern Recognition, pp. 126±133, June 2000.
    [19]Wen-Yan Chang, Chu-Song Chen, Yi-Ping Hung , “Appearance-guided particle filtering for articulated hand tracking,” Computer Vision and Pattern Recognition, IEEE Transactions, June 2005.
    [20]C.-S. Chua, H. Guan, and Y.-K. Ho, “Model-based 3D hand posture estimation from a single 2D image,” Image and Vision Computing, vol. 20, iss. 3, pp. 191-202, March 2002.
    [21]S.U. Lee and I. Cohen. , “3D hand reconstruction from a monocular view,” In Proc. of the 7th Int’l Conf. On Pattern Recognition (ICPR’04), Cambridge, United Kingdom, August 2004.
    [22]Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no. 11, pp.1330–1334, Nov. 2000.
    [23]R.L. Hsu, M. Abdel-Mottaleb, and A.K. Jain, “Face Detection in Color Images,” in Proc. Int’l Conf. Image Processing, pp. 1046-1049, 2001.
    [24]D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-Based Object Tracking,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 564-575, May 2003.
    [25]J. Carpenter, P. Clifford, and P. Fearnhead, “Improved particle filter for nonlinear problems,” Proc. Inst. Elect. Eng., Radar, Sonar, Navig., 1999.
    [26]A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling methods for Bayesian filtering,” Statist. Comput., Vol. 10, No. 3, pp. 197-208, 2000.
    [27]V.I. Pavlovic, R. Sharma, and T.S. Huang. “Visual interpretation of hand gestures for human-computer interaction: a review,” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.19, No.7, July 1997.
    [28]G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlinear state space models,” J. Comput. Graph. Statist., vol. 5, no. 1, pp. 1–25, 1996.
    [29]Miyata, N. Kouch, M. Mochimaru, M. Kurihara, T. , “Finger joint kinematics from MR images,” Intelligent Robots and Systems, Aug. 2005.

    下載圖示 校內:2008-09-11公開
    校外:2008-09-11公開
    QR CODE