| 研究生: |
陳柏丞 Chen, Po-Cheng |
|---|---|
| 論文名稱: |
慢性腎臟病兒童多種重金屬共同暴露及排除率與新型早期腎相關指標及腎功能之關係 Association between co-exposure / excretion rate of multiple heavy metals with new early kidney-related biomarkers and renal function in children with chronic kidney disease |
| 指導教授: |
李俊璋
Lee, Ching-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 197 |
| 中文關鍵詞: | 多重重金屬暴露及排除 、兒童 、慢性腎臟病 、早期腎相關指標 、室內PM2.5 |
| 外文關鍵詞: | Heavy metal multi-exposure and clearance, Children, Chronic kidney disease, Early kidney-related indicators, Indoor PM2.5 |
| 相關次數: | 點閱:33 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
慢性腎臟病(Chronic kidney disease, CKD)已成為全球死亡之主因之一,全世界有超過10% 以上的人受影響,尤其老年人、女性以及患有糖尿病或高血壓之族群更是高危險群。腎臟是重金屬毒性之主要標的器官,因為它具有過濾、濃縮及再吸收二價離子及金屬之能力,亦會透過破壞發炎反應或氧化壓力之平衡,進而影響腎功能,特別是身體機能尚未發展完整之兒童等易感性族群,而且生命早期之環境暴露不僅與兒童時期之疾病有關,還會嚴重影響生命後期之健康狀態。過去大多數研究主要探討受污染地區之高濃度重金屬暴露對腎功能之影響,至於環境暴露對慢性腎臟病影響之研究亦是多以成人為標的,鮮少以兒童為標的進行環境重金屬暴露研究。近期部分研究以迴歸模型分析在多種重金屬暴露下對腎功能之影響,並考慮其作用機制,探討發炎反應、氧化壓力及早期腎損傷指標是否作為中介因子,但尚未確認其影響機制,且有些橫斷性研究在低濃度金屬暴露下,同一種金屬在血液與尿液中觀察到對腎功能影響相反之結果。
因此,本研究擬以兒童作為研究族群,發展具較佳預測能力之新型腎相關指標,進行病例對照研究,自既有之兒童慢性腎臟疾病資料庫與國立成功大學附設醫院小兒腎臟門診招募慢性腎臟病兒童與對照組,因兒童無職業暴露,其主要暴露來自環境暴露,若未居住在受空氣、重金屬嚴重污染之地區,可假設其為低濃度環境重金屬暴露之狀況,同時考慮不同季節,環境污染、兒童活動及飲食習慣之差異,在3-9月(非空污季)及10-2月(空污季)兩個季節皆會收集兒童血液及尿液檢體,檢測其重金屬濃度、發炎因子、氧化壓力、腎小管健康指標及腎功能指標,並以迴歸分析評估多種重金屬暴露對腎功能之影響,同時探討發炎反應及氧化壓力是否具中介作用,以說明重金屬對腎功能之影響。然而,兒童慢性腎臟病多以先天性結構異常為主,即使估計之腎絲球過濾率(eGFR)位於正常範圍,腎臟排除重金屬之能力可能仍不及於一般正常兒童。因此,以重金屬排除、體內累積狀況與對照組兒童之差異性分析進行驗證,同時應用血液及尿液,共同解析重金屬排除及累積之新指標與發炎反應、氧化壓力、腎小管健康指標及腎功能指標間之關係。至於室內空氣中重金屬暴露評估則透過實際採集空氣中細懸浮微粒,以ICP-MS分析其重金屬成分含量,經性別、飲食及時間活動模式等校正後,分析住家臥室細懸浮微粒中重金屬濃度與血液及尿液中重金屬、發炎因子、氧化壓力、腎小管健康指標及腎功能指標之相關性。
本研究排除心臟病及高血壓之患者後,最終分析163人次慢性腎臟病組兒童及76人次對照組兒童,對照組以非腎臟疾病導致輕微血尿就診居多,病例組有85.9% 屬於腎結構性異常,大多皆位於Stage 1(74.2%)及Stage 2(16.6%),表示74.2% 之病例組兒童其eGFR值屬 > 90 mL/min per 1.73 m2之階段,而有15人次屬Stage 4(2.5%)及Stage 5(6.7%),其eGFR平均值為10.5 mL/min per 1.73 m2,且兩組間年齡、性別比例、BMI、血壓、早產比例、服用中西藥比例及魚類攝食量皆無顯著差異,僅居家二手菸暴露以對照組(40%)顯著高於病例組(22.5%),病例組與對照組人次約為2比1。71位受測者臥室中24小時PM2.5之平均濃度為28.6μg/m3,其中82%低於我國空氣品質PM2.5之建議值(35μg/m3)(環境部 2024),而所有PM2.5中成分分析僅檢出鉛及鎳。然而,發現有居家二手菸暴露者其室內空氣品質顯著較差,並且在居家使用線香或蚊香之家戶及距離主要道路較近之家戶室內空氣中PM2.5中之鉛濃度較高,若有使用空氣清淨機確實能降低室內PM2.5之濃度。
受測者血中鎘、鈷及鎳檢出率皆小於40% ,血中砷之檢出率最高(81%),血中總汞次之(69%),血中鉛之檢出率為52%,而尿液中重金屬之檢出率皆大於60%,尿中砷之檢出率為100%,其餘分別為鎘:64%、鈷:98%、汞:75%、鎳: 94%及鉛: 89%,所有血中金屬濃度皆低於參考值,尿中砷、鎘及鉛之濃度高於美國,而與我國其他一般兒童族群之文獻相近,然而血中低濃度金屬長期暴露亦具健康風險,仍不可忽視。本研究發現血中砷在家戶距離廟宇較近者顯著高於距離廟宇較遠者,可能來自廟宇線香或紙錢焚燒所致。其次,居家暴露二手菸之兒童其尿中鎘及鎳之濃度顯著較高,且住家之屋齡大於20年之兒童,其尿中鎘及鈷之濃度顯著較高,亦發現家中有使用空氣清淨機之兒童,其尿中鎘之濃度皆顯著低於未使用者,表示暴露二手菸或老舊房屋建材及金屬表面,可能釋放金屬至室內空氣中。然而,使用空氣清淨機雖能使鎘之暴露顯著減少,但因本研究臥室空氣中金屬之濃度較低,並不足以影響整體金屬暴露情形。此外,發現腎功能良好與否會影響金屬之排除狀況,血液中亦發現金屬累積之情況。進一步以飲食評估其可能之暴露來源,發現有服用中藥者,其血中砷高於未服用者;以瓶裝礦泉水為主要飲用水者血中鎳之濃度最高;海水魚之攝食頻率每週至少食用一次者,其血中砷之濃度及校正後之尿中砷之濃度皆顯著較高;結果發現貝類之攝食頻率每週食用1至3次者,其血中汞之濃度顯著高於每週食用不到1次者,表示魚貝類之攝食頻率較高者須多加留意其金屬暴露。
病例組血中砷及鈷皆與2種eGFR值呈顯著負相關,而血中汞卻與2種eGFR值呈顯著正相關,然而UCr, As、UCr, Co及UCr, Ni則亦與2種eGFR值皆呈顯著正相關,出現反向因果關係,可能之解釋為當腎功能較差時,使得金屬排泄至尿中較少。此外,發現血中砷之濃度與尿中腎小管健康指標內皮生長因子(Epidermal growth factor, EGF)呈顯著負相關,與前述血中砷之濃度與2種eGFR值皆呈顯著負相關之結果相呼應。
然而,從肌酸酐排除率發現在兩組兒童間無顯著差異,但以金屬排除能力之結果卻發現,病例組砷及鎘之清除率顯著低於對照組,而Clearance ratio發現鉛在病例組顯著高於對照組,表示病例組金屬排除能力較差之狀況。相關性分析結果發現對照組及病例組之所有金屬之Clearance ratio皆與2種eGFR呈負相關,表示金屬累積在體內對腎功能具不良影響,進一步結合迴歸分析之結果共同評估,鎘、汞及鎳之Clearance ratio不論是否考慮其他金屬共暴露下與2種eGFR皆呈顯著負相關,而砷、鈷及鉛僅在單一金屬之Clearance ratio與2種eGFR皆呈顯著負相關。
腎功能評估則發現病例組兒童之血清肌酸酐及Cystatin C顯著高於對照組,且2種eGFR值(GFR-Schwartz及eGFR-U25)皆顯著較低,表示即使病例組多為結構性異常,其腎功能仍顯著較差,並在腎相關指標中發現腎小管健康指標EGF病例組顯著低於對照組,且發炎因子腫瘤壞死因子受體 1 & 2(Tumor necrosis factor receptor 1 & 2, TNF-R1 & TNF-R2)顯著較高,此外,血中砷之濃度在考慮其他金屬濃度共暴露下仍與TNF-R1及TNF-R2皆呈顯著正相關,並發現TNF-R1具部分中介效應,能介導砷對GFR-Schwartz之影響,且亦TNF-R2具部分中介效應,介導砷對尿中EGF之影響,此外,亦發現α1-微球蛋白 (Alpha-1-microglobulin, α1-MG)可能具部分中介效應,介導鎘對腎小管健康指標腎臟損傷分子(Kidney Injury Molecule-1, KIM-1)之影響,最後,發炎因子單核細胞趨化蛋白-1(Monocyte Chemoattractant Protein-1, MCP-1)可能具部分中介效應,介導汞累積於體內對GFR-Schwartz之影響。
綜上所述,EGF、 TNF-R1及TNF-R2可能為在觀察兒童早期慢性腎臟病較敏感且較能評估慢性腎臟病早期進展之指標,且在低濃度金屬暴露下,慢性腎臟病兒童可能就具較高之易感性,進而影響腎小管健康,進而導致腎功能不良。此外,以血液檢體較能評估金屬與腎功能之影響,然若能搭配尿液檢體並分析金屬排除能力將有助於提高慢性腎臟病兒童之金屬暴露評估之準確性。除了由環境空氣吸入金屬之暴露外,飲食亦是兒童之主要金屬暴露來源,須注意魚貝類之攝食頻率,若能再減少線香、蚊香及二手菸等,並使用空氣清淨機,將能大幅度地降低兒童金屬暴露。
The purpose of the present study is to investigate new early kidney-related indicators that may have better predictive power to evaluate the relationship between multiple metals exposure and renal function in children with chronic kidney disease. Based on past researches, exposure to multiple metals and the ability of the kidney to excrete metals are used as metal exposure status and body burden of metals. Indicators that related to CKD are angiotensin II (Ang II), tubular health indicators (kidney injury molecule-1 (KIM-1), epidermal growth factor (EGF) and alpha-1-microglobulin (α1-MG), inflammatory factor indicators (tumor necrosis factor receptor 1 & 2 (TNF-R1 & TNF-R2), monocyte chemoattractant protein-1 (MCP-1), C-reactive protein (CRP) and Interleukin 6 (IL-6)) and oxidative stress indicators (8-hydroxy-2-deoxyguanosine (8-OHdG) and Malondialdehyde (MDA) were integrated to evaluate the relationship between these indicators and renal function under multiple metals exposure. 163 CKD children and 76 controls were recruited and accepted the examinations. The serum creatinine and Cystatin C in the case group were significantly higher than control group, and the two eGFR values (GFR-Schwartz and eGFR-U25) were both significantly lower, indicating that even if the case group only had structural abnormalities, their renal function was still significant worse. In addition, EGF in the case group was significantly lower than control group. TNF-R1 and TNF-R2 were significantly higher than control group. Moreover, the concentration of arsenic in the blood was significantly positively correlated with both TNF-R1 and TNF-R2 after adusting the co-exposure to other metal concentrations, and it was found that TNF-R1 has a partial mediating effect and could mediate the impact of arsenic on GFR-Schwartz, and TNF-R2 also has a partial mediating effect, mediating the effect of arsenic on urinary EGF.
Aaseth, J., Alexander, J., Alehagen, U., Tinkov, A., Skalny, A., Larsson, A., Crisponi, G., & Nurchi, V. M. (2021). The Aging Kidney-As Influenced by Heavy Metal Exposure and Selenium Supplementation. Biomolecules, 11(8), Article 1078. https://doi.org/10.3390/biom11081078
Abdul, K. S. M., Jayasinghe, S. S., Chandana, E. P. S., Jayasumana, C., & De Silva, P. (2015). Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, 40(3), 828-846. https://doi.org/10.1016/j.etap.2015.09.016
Ahamed, M., Verma, S., Kumar, A., & Siddiqui, M. K. J. (2005). Environmental exposure to lead and its correlation with biochemical indices in children. Science of the Total Environment, 346(1-3), 48-55. https://doi.org/10.1016/j.scitotenv.2004.12.019
Akerstrom, B., Logdberg, L., Berggard, T., Osmark, P., & Lindqvist, A. (2000). alpha(1)-Microglobulin: a yellow-brown lipocalin. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 1482(1-2), 172-184. https://doi.org/10.1016/s0167-4838(00)00157-6
Al-Lamki, R. S., & Mayadas, T. N. (2015). TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney International, 87(2), 281-296. https://doi.org/10.1038/ki.2014.285
Al-Lamki, R. S., Wang, J., Vandenabeele, P., Bradley, J. A., Thiru, S., Luo, D. H., Min, W., Pober, J. S., & Bradley, J. R. (2005). TNFR1-and TNFR2-mediated signaling pathways in human kidney are cell type-specific and differentially contribute to renal injury. Faseb Journal, 19(12), 1637-1645. https://doi.org/10.1096/fj.05-3841com
Amatruda, J. G., Katz, R., Sarnak, M. J., Gutierrez, O. M., Greenberg, J. H., Cushman, M., Waikar, S., Parikh, C. R., Schelling, J. R., Jogalekar, M. P., Bonventre, J. V., Vasan, R. S., Kimmel, P. L., Shlipak, M. G., Ix, J. H., & Consortium, C. K. D. B. (2022). Biomarkers of Kidney Tubule Disease and Risk of End-Stage Kidney Disease in Persons With Diabetes and CKD. Kidney International Reports, 7(7), 1514-1523. https://doi.org/10.1016/j.ekir.2022.03.033
Amdur, R. L., Feldman, H. I., Gupta, J., Yang, W., Kanetsky, P., Shlipak, M., Rahman, M., Lash, J. P., Townsend, R. R., Ojo, A., Roy-Chaudhury, A., Go, A. S., Joffe, M., He, J., Balakrishnan, V. S., Kimmel, P. L., Kusek, J. W., Raj, D. S., & Investigators, C. S. (2016). Inflammation and Progression of CKD: The CRIC Study. Clinical Journal of the American Society of Nephrology, 11(9), 1546-1556. https://doi.org/10.2215/cjn.13121215
Ames, M. K., Atkins, C. E., & Pitt, B. (2019). The renin-angiotensin-aldosterone system and its suppression. Journal of Veterinary Internal Medicine, 33(2), 363-382. https://doi.org/10.1111/jvim.15454
Andrassy, K. M. (2013). Comments on 'KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease'. Kidney International, 84(3), 622-623. https://doi.org/10.1038/ki.2013.243
Azukaitis, K., Ju, W. J., Kirchner, M., Nair, V., Smith, M., Fang, Z. Y., Thurn-Valsassina, D., Bayazit, A., Niemirska, A., Canpolat, N., Bulut, I. K., Yalcinkaya, F., Paripovic, D., Harambat, J., Cakar, N., Alpay, H., Lugani, F., Mencarelli, F., Civilibal, M., . . . Grp, E.
T. (2019). Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children. Kidney International, 96(1), 214-221. https://doi.org/10.1016/j.kint.2019.01.035
Bai, L., He, Z. J., Chen, W. Y., & Wang, Y. J. (2020). Distribution characteristics and source analysis of metal elements in indoor PM2.5 in high-rise buildings during heating season in Northeast China. Indoor and Built Environment, 29(8), 1087-1100. https://doi.org/10.1177/1420326x19875495
Becherucci, F., Roperto, R. M., Materassi, M., & Romagnani, P. (2016). Chronic kidney disease in children. Clinical Kidney Journal, 9(4), 583-591. https://doi.org/10.1093/ckj/sfw047
Benoit, S. W., Ciccia, E. A., & Devarajan, P. (2020). Cystatin C as a biomarker of chronic kidney disease: latest developments. Expert Review of Molecular Diagnostics, 20(10), 1019-1026. https://doi.org/10.1080/14737159.2020.1768849
Bikbov, B., Purcell, C., Levey, A. S., Smith, M., Abdoli, A., Abebe, M., Adebayo, O. M., Afarideh, M., Agarwal, S. K., Agudelo-Botero, M., Ahmadian, E., Al-Aly, Z., Alipour, V., Almasi-Hashiani, A., Al-Raddadi, R. M., Alvis-Guzman, N., Amini, S., Andrei, T., Andrei, C. L., . . . Collaborat, G. B. D. C. K. D. (2020). Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 395(10225), 709-733. https://doi.org/10.1016/s0140-6736(20)30045-3
Boekelheide, K., Blumberg, B., Chapin, R. E., Cote, I., Graziano, J. H., Janesick, A., Lane, R., Lillycrop, K., Myatt, L., States, J. C., Thayer, K. A., Waalkes, M. P., & Rogers, J. M. (2012). Predicting Later-Life Outcomes of Early-Life Exposures. Environmental Health Perspectives, 120(10), 1353-1361. https://doi.org/10.1289/ehp.1204934
Bonventre, J. V. (2014). Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis. Kidney International Supplements, 4(1), 39-44. https://doi.org/10.1038/kisup.2014.8
Boskabady, M., Marefati, N., Farkhondeh, T., Shakeri, F., Farshbaf, A., & Boskabady, M. H. (2018). The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environment International, 120, 404-420. https://doi.org/10.1016/j.envint.2018.08.013
Bozack, A. K., Hall, M. N., Liu, X. H., Ilievski, V., Lomax-Luu, A. M., Parvez, F., Siddique, A. B., Shahriar, H., Uddin, M. N., Islam, T., Graziano, J. H., & Gamble, M. V. (2019). Folic acid supplementation enhances arsenic methylation: results from a folic acid and creatine supplementation randomized controlled trial in Bangladesh. American Journal of Clinical Nutrition, 109(2), 380-391. https://doi.org/10.1093/ajcn/nqy148
Bozack, A. K., Saxena, R., & Gamble, M. V. (2018). Nutritional Influences on One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity. In P. J. Stover & R. Balling (Eds.), Annual Review of Nutrition, Vol 38 (Vol. 38, pp. 401-429). https://doi.org/10.1146/annurev-nutr-082117-051757
Brokamp, C., Rao, M. B., Fan, Z. H., & Ryan, P. H. (2015). Does the elemental composition of indoor and outdoor PM2.5 accurately represent the elemental composition of personal PM2.5? Atmospheric Environment, 101, 226-234. https://doi.org/10.1016/j.atmosenv.2014.11.022
Bruce. (2007). Handbook on the Toxicology of Metals, 3rd Edition. <Go to ISI>://WOS:000311285300050
Bu-Olayan, A. H., & Thomas, B. V. (2021). Exposition of respiratory ailments from trace metals concentrations in incenses. Scientific Reports, 11(1), Article 10210. https://doi.org/10.1038/s41598-021-89493-w
Buser, M. C., Ingber, S. Z., Raines, N., Fowler, D. A., & Scinicariello, F. (2016). Urinary and blood cadmium and lead and kidney function: NHANES 2007-2012. International Journal of Hygiene and Environmental Health, 219(3), 261-267. https://doi.org/10.1016/j.ijheh.2016.01.005
Caito, S., Lopes, A., Paoliello, M. M. B., & Aschner, M. (2017). Toxicology of Lead and Its Damage to Mammalian Organs. In A. Sigel, H. Sigel, & R. K. O. Sigel (Eds.), Lead: Its Effects on Environment and Health (Vol. 17, pp. 501-534). https://doi.org/10.1515/9783110434330-016
Camilla, R., Brachemi, S., Pichette, V., Cartier, P., Laforest-Renald, A., MacRae, T., Madore, F., & Troyanov, S. (2011). Urinary monocyte chemotactic protein 1: marker of renal function decline in diabetic and nondiabetic proteinuric renal disease. Journal of Nephrology, 24(1), 60-67. https://doi.org/10.5301/jn.2010.1458
Carbayo, J., Verdalles, U., Díaz-Crespo, F., Lázaro, A., González-Nicolás, M., Arroyo, D., Blanco, D., García-Gámiz, M., & Goicoechea, M. (2024). Tubular biomarkers in proteinuric kidney disease: histology correlation and kidney prognosis of tubular biomarkers. Clinical Kidney Journal, 17(5), Article sfae146. https://doi.org/10.1093/ckj/sfae146
Cardenas-Gonzalez, M., Osorio-Yanez, C., Gaspar-Ramirez, O., Paykovic, M., Ochoa-Martinez, A., Lopez-Ventura, D., Medeiros, M., Barbier, O. C., Perez-Maldonado, I. N., Sabbisetti, V. S., Bonventre, J. V., & Vaidya, V. S. (2016). Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environmental Research, 150, 653-662. https://doi.org/10.1016/j.envres.2016.06.032
CDC. (2023/11/22). Blood Lead Reference Value. https://www.cdc.gov/nceh/lead/data/blood-lead-reference-value.htm
Chan, C., Heinbokel, J. F., Myers, J. A., & Jacobs, R. R. (2012). A dynamic model using monitoring data and watershed characteristics to project fish tissue mercury concentrations in stream systems. Integrated Environmental Assessment and Management, 8(4), 709-722. https://doi.org/10.1002/ieam.1302
Chaumont, A., Voisin, C., Deumer, G., Haufroid, V., Annesi-Maesano, I., Roels, H., Thijs, L., Staessen, J., & Bernard, A. (2013). Associations of Urinary Cadmium with Age and Urinary Proteins: Further Evidence of Physiological Variations Unrelated to Metal Accumulation and Toxicity. Environmental Health Perspectives, 121(9), 1047-1053. https://doi.org/10.1289/ehp.1306607
Chen, X., Chen, X., Wang, X. R., Wang, M. M., Liang, Y. H., Zhu, G. Y., & Jin, T. Y. (2021). The association between estimated glomerular filtration rate and cadmium exposure: An 8-year follow-up study. International Journal of Hygiene and Environmental Health, 235, Article 113774. https://doi.org/10.1016/j.ijheh.2021.113774
Chen, X., Zhu, G. Y., Wang, Z. Q., Zhou, H., He, P., Liu, Y. K., & Jin, T. Y. (2019). The association between lead and cadmium co-exposure and renal dysfunction.
Ecotoxicology and Environmental Safety, 173, 429-435. https://doi.org/10.1016/j.ecoenv.2019.01.121
Christensen, E. I., & Nielsen, S. (1991). STRUCTURAL AND FUNCTIONAL FEATURES OF PROTEIN HANDLING IN THE KIDNEY PROXIMAL TUBULE. Seminars in Nephrology, 11(4), 414-439. <Go to ISI>://WOS:A1991FV12600004
Chuang, C. H., Lee, Y. Y., Sheu, B. F., Hsiao, C. T., Loke, S. S., Chen, J. C., & Li, W. C. (2013). Homocysteine and C-Reactive Protein as Useful Surrogate Markers for Evaluating CKD Risk in Adults. Kidney & Blood Pressure Research, 37(4-5), 402-413. https://doi.org/10.1159/000355722
Chung, M. C., Hsu, H. T., Mao, Y. C., Wu, C. C., Ho, C. T., Liu, C. S., & Chung, C. J. (2022). Association and mediation analyses among multiple metals exposure, plasma folate, and community-based impaired estimated glomerular filtration rate in central Taiwan. Environmental Health, 21(1), Article 44. https://doi.org/10.1186/s12940-022-00855-x
Coca, S. G., Nadkarni, G. N., Huang, Y., Moledina, D. G., Rao, V., Zhang, J., Ferket, B., Crowley, S. T., Fried, L. F., & Parikh, C. R. (2017). Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease. Journal of the American Society of Nephrology, 28(9), 2786-2793. https://doi.org/10.1681/asn.2016101101
Cortes, S., Zuniga-Venegas, L., Pancetti, F., Covarrubias, A., Ramirez-Santana, M., Adaros, H., & Munoz, L. (2021). A Positive Relationship between Exposure to Heavy Metals and Development of Chronic Diseases: A Case Study from Chile. International Journal of Environmental Research and Public Health, 18(4), Article 1419. https://doi.org/10.3390/ijerph18041419
Daniel, J., Ziaee, H., Pradhan, C., Pynsent, P. B., & McMinn, D. J. W. (2010). Renal Clearance of Cobalt in Relation to the Use of Metal-on-Metal Bearings in Hip Arthroplasty. Journal of Bone and Joint Surgery-American Volume, 92A(4), 840-845. https://doi.org/10.2106/jbjs.H.01821
de Burbure, C., Buchet, J. P., Leroyer, A., Nisse, C., Haguenoer, J. M., Mutti, A., Smerhovsky, Z., Cikrt, M., Trzcinka-Ochocka, M., Razniewska, G., Jakubowski, M., & Bernard, A. (2006). Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: Evidence of early effects and multiple interactions at environmental exposure levels. Environmental Health Perspectives, 114(4), 584-590. https://doi.org/10.1289/ehp.8202
Dewanjee, S., Sahu, R., Karmakar, S., & Gangopadhyay, M. (2013). Toxic effects of lead exposure in Wistar rats: Involvement of oxidative stress and the beneficial role of edible jute (Corchorus olitorius) leaves. Food and Chemical Toxicology, 55, 78-91. https://doi.org/10.1016/j.fct.2012.12.040
Diagomanolin, V., Farhang, M., Ghazi-Khansari, M., & Jafarzadeh, N. (2004). Heavy metals (Ni, Cr, Cu) in the Karoon waterway river, Iran. Toxicology Letters, 151(1), 63-68. https://doi.org/10.1016/j.toxlet.2004.02.018
Diamond, G. L., Thayer, W. C., Klotzbach, J. M., & Ingerman, L. D. (2019). Urinary cadmium clearance, its relationship to glomerular filtration rate and implications for cadmium epidemiology. Journal of Toxicology and Environmental Health-Part a-Current Issues, 82(23-24), 1187-1198. https://doi.org/10.1080/15287394.2019.1707947
Domingo-Relloso, A., Grau-Perez, M., Galan-Chilet, I., Garrido-Martinez, M. J., Tormos, C., Navas-Acien, A., Gomez-Ariza, J. L., Monzo-Beltran, L., Saez-Tormo, G., Garcia-Barrera, T., Laita, A. D., Figuero, L. S. B., Martin-Escudero, J. C., Chaves, F. J., Redon, J., & Tellez-Plaza, M. (2019). Urinary metals and metal mixtures and oxidative stress biomarkers in an adult population from Spain: The Hortega Study. Environment International, 123, 171-180. https://doi.org/10.1016/j.envint.2018.11.055
Dong, W. X., Zhang, K. L., Gong, Z. G., Luo, T. W., Li, J. H., Wang, X. R., Zou, H., Song, R. L., Zhu, J. Q., Ma, Y. G., Liu, G., & Liu, Z. P. (2023). N-acetylcysteine delayed cadmium-induced chronic kidney injury by activating the sirtuin 1-P53 signaling pathway. Chemico-Biological Interactions, 369, Article 110299. https://doi.org/10.1016/j.cbi.2022.110299
Dong, Y. S., Silver, S. M., & Sterns, R. H. (2023). Estimating urine volume from the urine creatinine concentration. Nephrology Dialysis Transplantation, 38(4), 811-818. https://doi.org/10.1093/ndt/gfab337
Du, G. H., Song, X. G., Zhou, F. K., Ouyang, L., Li, Q., Ruan, S. Y., Yang, S., Rao, S. Q., Wan, X., Xie, J., Feng, C., & Fan, G. Q. (2023). Association between multiple metal(loid)s exposure and renal function: a cross-sectional study from southeastern China. Environmental Science and Pollution Research, 30(41), 94552-94564. https://doi.org/10.1007/s11356-023-29001-x
Du, Y. X., Xu, X. H., Chu, M., Guo, Y., & Wang, J. H. (2016). Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. Journal of Thoracic Disease, 8(1), E8-E19. https://doi.org/10.3978/j.issn.2072-1439.2015.11.37
Fang, G. C., Chiang, H. C., Chen, Y. C., Xiao, Y. F., Wu, C. M., & Kuo, Y. C. (2015). A measurement of summertime dry deposition of ambient air particulates and associated metallic pollutants in Central Taiwan. Environmental Geochemistry and Health, 37(2), 233-249. https://doi.org/10.1007/s10653-014-9642-3
Firestone, M. P., & Amler, R. W. (2003). Children's environmental health - an international perspective. International Journal of Hygiene and Environmental Health, 206(4-5), 395-400. https://doi.org/10.1078/1438-4639-00236
Foreman, K. J., Marquez, N., Dolgert, A., Fukutaki, K., Fullman, N., McGaughey, M., Pletcher, M. A., Smith, A. E., Tang, K., Yuan, C. W., Brown, J. C., Friedman, J., He, J. W., Heuton, K. P., Holmberg, M., Patel, D. J., Reidy, P., Carter, A., Cercy, K., . . . Murray, C. J. L. (2018). Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet, 392(10159), 2052-2090. https://doi.org/10.1016/s0140-6736(18)31694-5
Frank, J. J., Poulakos, A. G., Tornero-Velez, R., & Xue, J. P. (2019). Systematic review and meta-analyses of lead (Pb) concentrations in environmental media (soil, dust, water, food, and air) reported in the United States from 1996 to 2016. Science of the Total Environment, 694, Article 133489. https://doi.org/10.1016/j.scitotenv.2019.07.295
Garcia-Esquinas, E., Loeffler, L. F., Weaver, V. M., Fadrowski, J. J., & Navas-Acien, A. (2013). Kidney Function and Tobacco Smoke Exposure in US Adolescents. Pediatrics, 131(5), E1415-E1423. https://doi.org/10.1542/peds.2012-3201
Garcon, G., Leleu, B., Marez, T., Zerimech, F., Jean-Marie, H. D., Daniel, F. B., & Shirali, P. (2007). Biomonitoring of the adverse effects induced by the chronic exposure to lead and cadmium on kidney function: Usefulness of alpha-glutathione S-transferase. Science of the Total Environment, 377(2-3), 165-172. https://doi.org/10.1016/j.scitotenv.2007.02.002
Garla, R., Ganger, R., Mohanty, B. P., Verma, S., Bansal, M. P., & Garg, M. L. (2016). Metallothionein does not sequester arsenic(III) ions in condition ofacute arsenic toxicity. Toxicology, 366, 68-73. https://doi.org/10.1016/j.tox.2016.08.008
Georgianos, P. I., & Agarwal, R. (2018). Revisiting RAAS blockade in CKD with newer potassium-binding drugs. Kidney International, 93(2), 325-334. https://doi.org/10.1016/j.kint.2017.08.038
Gohda, T., Niewczas, M. A., Ficociello, L. H., Walker, W. H., Skupien, J., Rosetti, F., Cullere, X., Johnson, A. C., Crabtree, G., Smiles, A. M., Mayadas, T. N., Warram, J. H., & Krolewski, A. S. (2012). Circulating TNF Receptors 1 and 2 Predict Stage 3 CKD in Type 1 Diabetes. Journal of the American Society of Nephrology, 23(3), 516-524. https://doi.org/10.1681/asn.2011060628
Gottlieb, E. R., Estiverne, C., Tolan, N. V., Melanson, S. E. F., & Mendu, M. L. (2023). Estimated GFR With Cystatin C and Creatinine in Clinical Practice: A Retrospective Cohort Study. Kidney Medicine, 5(3), Article 100600. https://doi.org/10.1016/j.xkme.2023.100600
Grau-Perez, M., Domingo-Relloso, A., Garcia-Barrera, T., Gomez-Ariza, J. L., Leon-Latre, M., Moreno-Franco, B., Laclaustra, M., Guallar, E., Navas-Acien, A., Pastor-Barriuso, R., Redon, J., & Tellez-Plaza, M. (2023). Association of single and joint metals with albuminuria and estimated glomerular filtration longitudinal change in middle-aged adults from Spain: The Aragon workers health study. Environmental Pollution, 318, Article 120851. https://doi.org/10.1016/j.envpol.2022.120851
Greenberg, J. H., Abraham, A. G., Xu, Y. W., Schelling, J. R., Feldman, H. I., Sabbisetti, V. S., Gonzalez, M. C., Coca, S., Schrauben, S. J., Waikar, S. S., Ramachandran, V. S., Shlipak, M. G., Warady, B., Kimmel, P. L., Bonventre, J. V., Denburg, M., Parikh, C. R., Furth, S., & Consortium, C. K. D. B. (2020). Plasma Biomarkers of Tubular Injury and Inflammation Are Associated with CKD Progression in Children. Journal of the American Society of Nephrology, 31(5), 1067-1077. https://doi.org/10.1681/asn.2019070723
Greenberg, J. H., Abraham, A. G., Xu, Y. W., Schelling, J. R., Feldman, H. I., Sabbisetti, V. S., Ix, J. H., Jogalekar, M. P., Coca, S., Waikar, S. S., Shlipak, M. G., Warady, B. A., Vasan, R. S., Kimmel, P. L., Bonventre, J. V., Denburg, M., Parikh, C. R., Furth, S., & Consortium, C. K. D. B. (2021). Urine Biomarkers of Kidney Tubule Health, Injury, and Inflammation are Associated with Progression of CKD in Children. Journal of the American Society of Nephrology, 32(10), 2664-2677. https://doi.org/10.1681/asn.2021010094
Gupta, J., Mitra, N., Kanetsky, P. A., Devaney, J., Wing, M. R., Reilly, M., Shah, V. O., Balakrishnan, V. S., Guzman, N. J., Girndt, M., Periera, B. G., Feldman, H. I., Kusek, J. W., Joffe, M. M., Raj, D. S., & Investigators, C. S. (2012). Association between Albuminuria, Kidney Function, and Inflammatory Biomarker Profile in CKD in CRIC. Clinical Journal of the American Society of Nephrology, 7(12), 1938-1946. https://doi.org/10.2215/cjn.03500412
Gutierrez, O. M., Shlipak, M. G., Katz, R., Waikar, S. S., Greenberg, J. H., Schrauben, S. J., Coca, S., Parikh, C. R., Vasan, R. S., Feldman, H. I., Kimmel, P. L., Cushman, M., Bonventre, J. V., Sarnak, M. J., & Ix, J. H. (2022). Associations of Plasma Biomarkers of Inflammation, Fibrosis, and Kidney Tubular Injury With Progression of Diabetic Kidney Disease: A Cohort Study. American Journal of Kidney Diseases, 79(6), 849-+. https://doi.org/10.1053/j.ajkd.2021.09.018
Haber, L. T., Erdreicht, L., Diamond, G. L., Maier, A. M., Ratney, R., Zhao, Q., & Dourson, M. L. (2000). Hazard identification and dose response of inhaled nickel-soluble salts. Regulatory Toxicology and Pharmacology, 31(2), 210-230. https://doi.org/10.1006/rtph.2000.1377
Hai, D. N., Tung, L. V., Van, D. K., Binh, T. T., Phuong, H. L., Trung, N. D., Son, N. D., Giang, H. T., Hung, N. M., & Khue, P. M. (2018). Lead Environmental Pollution and Childhood Lead Poisoning at Ban Thi Commune, Bac Kan Province, Vietnam. Biomed Research International, 2018, Article 5156812. https://doi.org/10.1155/2018/5156812
Haller, H., Bertram, A., Nadrowitz, F., & Menne, J. (2016). Monocyte chemoattractant protein-1 and the kidney. Current Opinion in Nephrology and Hypertension, 25(1), 42-49. https://doi.org/10.1097/mnh.0000000000000186
Harambat, J., van Stralen, K. J., Schaefer, F., Verrina, E., Jankauskiene, A., Maxwell, H., Puretic, Z., Raes, A., Rubik, J., & Jager, J. (2011). Variation in pediatric kidney transplantation policies and practices across Europe: a survey of the ESPN/ERA-EDTA registry. Pediatric Nephrology, 26(9), 1582-1583. <Go to ISI>://WOS:000293248800056
Hassanvand, M. S., Naddafi, K., Faridi, S., Nabizadeh, R., Sowlat, M. H., Momeniha, F., Gholampour, A., Arhami, M., Kashani, H., Zare, A., Niazi, S., Rastkari, N., Nazmara, S., Ghani, M., & Yunesian, M. (2015). Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory. Science of the Total Environment, 527, 100-110. https://doi.org/10.1016/j.scitotenv.2015.05.001
Hawkesworth, S., Wagatsuma, Y., Kippler, M., Fulford, A. J. C., Arifeen, S. E., Persson, L. A., Moore, S. E., & Vahter, M. (2013). Early exposure to toxic metals has a limited effect on blood pressure or kidney function in later childhood, rural Bangladesh. International Journal of Epidemiology, 42(1), 176-185. https://doi.org/10.1093/ije/dys215
Helal, I., Fick-Brosnahan, G. M., Reed-Gitomer, B., & Schrier, R. W. (2012). Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nature Reviews Nephrology, 8(5), 293-300. https://doi.org/10.1038/nrneph.2012.19
Hsu, L. I., Hsieh, F. I., Wang, Y. H., Lai, T. S., Wu, M. M., Chen, C. J., Chiou, H. Y., & Hsu, K. H. (2017). Arsenic Exposure From Drinking Water and the Incidence of CKD in Low to Moderate Exposed Areas of Taiwan: A 14-Year Prospective Study. American Journal of Kidney Diseases, 70(6), 787-797. https://doi.org/10.1053/j.ajkd.2017.06.012
Hu, W. L., Li, G. A., He, J. L., Zhao, H. H., Zhang, H. S., Lu, H. H., Liu, J. J., & Huang, F. (2023). Association of exposure to multiple serum metals with the risk of chronic kidney disease in the elderly: a population-based case-control study. Environmental
Science and Pollution Research, 30(7), 17245-17256. https://doi.org/10.1007/s11356-022-23303-2
Jain, R. B. (2019). Synergistic impact of co-exposures to toxic metals cadmium, lead, and mercury along with perfluoroalkyl substances on the healthy kidney function. Environmental Research, 169, 342-347. https://doi.org/10.1016/j.envres.2018.11.037
Jiang, Y. L., Fei, J., Cao, P., Zhang, C., Tang, M. M., Cheng, J. Y., Zhao, H., & Fu, L. (2022). Serum cadmium positively correlates with inflammatory cytokines in patients with chronic obstructive pulmonary disease. Environmental Toxicology, 37(1), 151-160. https://doi.org/10.1002/tox.23386
Jin, R. F., Zhu, X. Z., Shrubsole, M. J., Yu, C., Xia, Z. L., & Dai, Q. (2018). Associations of renal function with urinary excretion of metals: Evidence from NHANES 2003-2012. Environment International, 121, 1355-1362. https://doi.org/10.1016/j.envint.2018.11.002
Jin, Y. Y., Lu, Y. W., Li, Y. Y., Zhao, H. J., Wang, X., Shen, Y. T., & Kuang, X. Y. (2020). Correlation between environmental low-dose cadmium exposure and early kidney damage: A comparative study in an industrial zone vs. a living quarter in Shanghai, China. Environmental Toxicology and Pharmacology, 79, Article 103381. https://doi.org/10.1016/j.etap.2020.103381
Jotwani, V., Garimella, P. S., Katz, R., Malhotra, R., Bates, J., Cheung, A. K., Chonchol, M., Drawz, P. E., Freedman, B. I., Haley, W. E., Killeen, A. A., Punzi, H., Sarnak, M. J., Segal, M. S., Shlipak, M. G., Ix, J. H., & Grp, S. R. (2020). Tubular Biomarkers and Chronic Kidney Disease Progression in SPRINT Participants. American Journal of Nephrology, 51(10), 797-805. https://doi.org/10.1159/000509978
Ju, W. J., Nair, V., Smith, S., Zhu, L., Shedden, K., Song, P. X. K., Mariani, L. H., Eichinger, F. H., Berthier, C. C., Randolph, A., Lai, J. Y. C., Zhou, Y., Hawkins, J. J., Bitzer, M., Sampson, M. G., Thier, M., Solier, C., Duran-Pacheco, G. C., Duchateau-Nguyen, G., . . . Consortium, P. K.-I. (2015). Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Science Translational Medicine, 7(316), Article 316ra193. https://doi.org/10.1126/scitranslmed.aac7071
Jung, C. C., Syu, Z. H., Chou, C. C. K., & Huang, Y. T. (2023). A study to characterize the lead isotopic fingerprint in PM2.5 emitted from incense stick and cigarette burning. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-26383-w
Kadiiska, M., van't Erve, T., Mason, R., & Ferguson, K. (2018). The exposure-dependent increases in 8-iso-PGF2 alpha and the significance of decoding its sources to identify a specific indicator of oxidative stress or inflammation. Free Radical Biology and Medicine, 128, S117-S118. https://doi.org/10.1016/j.freeradbiomed.2018.10.287
Kalantar-Zadeh, K., Jafar, T. H., Nitsch, D., Neuen, B. L., & Perkovic, V. (2021). Chronic kidney disease. Lancet, 398(10302), 786-802. https://doi.org/10.1016/s0140-6736(21)00519-5
Kim, N. H., Hyun, Y. Y., Lee, K. B., Chang, Y., Rhu, S., Oh, K. H., & Ahn, C. (2015). Environmental Heavy Metal Exposure and Chronic Kidney Disease in the General
Population. Journal of Korean Medical Science, 30(3), 272-277. https://doi.org/10.3346/jkms.2015.30.3.272
Kim, S., & Uhm, J. Y. (2019). Individual and Environmental Factors Associated with Proteinuria in Korean Children: A Multilevel Analysis. International Journal of Environmental Research and Public Health, 16(18), Article 3317. https://doi.org/10.3390/ijerph16183317
Kovesdy, C. P. (2022). Epidemiology of chronic kidney disease: an update 2022. Kidney International Supplements, 12(1), 7-11. https://doi.org/10.1016/j.kisu.2021.11.003
Kumar, S. (2018). Cellular and molecular pathways of renal repair after acute kidney injury. Kidney International, 93(1), 27-40. https://doi.org/10.1016/j.kint.2017.07.030
Kusumi, K., Kremsdorf, R., Kakajiwala, A., & Mahan, J. D. (2022). Pediatric Mineral and Bone Disorder of Chronic Kidney Disease and Cardiovascular Disease. Advances in Chronic Kidney Disease, 29(3), 275-282. https://doi.org/10.1053/j.ackd.2022.04.002
López-Novoa, J. M., Martínez-Salgado, C., Rodríguez-Peña, A. B., & Hernández, F. J. L. (2010). Common pathophysiological mechanisms of chronic kidney disease: Therapeutic perspectives. Pharmacology & Therapeutics, 128(1), 61-81. https://doi.org/10.1016/j.pharmthera.2010.05.006
Lacerda, D., Pestana, I. A., Vergilio, C. D., & de Rezende, C. E. (2023). Global decrease in blood lead concentrations due to the removal of leaded gasoline. Chemosphere, 324, Article 138207. https://doi.org/10.1016/j.chemosphere.2023.138207
Lai, C. H., Ho, S. C., Pan, C. H., Chen, W. L., Wang, C. C., Liang, C. W., Chien, C. Y., Riediker, M., Chuang, K. J., & Chuang, H. C. (2021). Chronic exposure to metal fume PM2.5 on inflammation and stress hormone cortisol in shipyard workers: A repeat measurement study. Ecotoxicology and Environmental Safety, 215, Article 112144. https://doi.org/10.1016/j.ecoenv.2021.112144
Lea, J. P., & Nicholas, S. B. (2002). Diabetes mellitus and hypertension: Key risk factors for kidney disease. Journal of the National Medical Association, 94(8), 7S-15S. <Go to ISI>://WOS:000177129000003
Lech, M., Rommele, C., & Anders, H. J. (2013). Pentraxins in nephrology: C-reactive protein, serum amyloid P and pentraxin-3. Nephrology Dialysis Transplantation, 28(4), 803-811. https://doi.org/10.1093/ndt/gfs448
Lee, J. E., Choi, S. Y., Huh, W., Kim, Y. G., Kim, D. J., & Oh, H. Y. (2007). Metabolic syndrome, C-reactive protein, and chronic kidney disease in nondiabetic, nonhypertensive adults. American Journal of Hypertension, 20(11), 1189-1194. https://doi.org/10.1016/j.amjhyper.2007.04.020
Lee, K. H., Park, E., Choi, H. J., Kang, H. G., Ha, I. S., Cheong, H. I., Park, Y. S., Cho, H., Han, K. H., Kim, S. H., Cho, M. H., Lee, J. H., & Shin, J. I. (2019). Anemia and Iron Deficiency in Children with Chronic Kidney Disease (CKD): Data from the Know-Ped CKD Study. Journal of Clinical Medicine, 8(2), Article 152. https://doi.org/10.3390/jcm8020152
Leheste, J. R., Rolinski, B., Vorum, H., Hilpert, J., Nykjaer, A., Jacobsen, C., Aucouturier, P., Moskaug, J. O., Otto, A., Christensen, E. I., & Willnow, T. E. (1999). Megalin knockout mice as an animal model of low molecular weight proteinuria. American
Journal of Pathology, 155(4), 1361-1370. https://doi.org/10.1016/s0002-9440(10)65238-8
Leiba, A., Fishman, B., Twig, G., Gilad, D., Derazne, E., Shamiss, A., Shohat, T., Ron, O., & Grossman, E. (2019). Association of Adolescent Hypertension With Future End-stage Renal Disease. Jama Internal Medicine, 179(4), 517-523. https://doi.org/10.1001/jamainternmed.2018.7632
Lentini, P., Zanoli, L., Granata, A., Santo Signorelli, S., Castellino, P., & Dell'Aquila, R. (2017). Kidney and heavy metals - The role of environmental exposure. Molecular Medicine Reports, 15(5), 3413-3419. https://doi.org/10.3892/mmr.2017.6389
Levin, A., Hemmelgarn, B., Culleton, B., Tobe, S., McFarlane, P., Ruzicka, M., Burns, K., Manns, B., White, C., Madore, F., Moist, L., Klarenbach, S., Barrett, B., Foley, R., Jindal, K., Senior, P., Pannu, N., Shurraw, S., Akbari, A., . . . Canadian Soc, N. (2008). Guidelines for the management of chronic kidney disease. Canadian Medical Association Journal, 179(11), 1154-1162. https://doi.org/10.1503/cmaj.080351
Li, A., Mei, Y. Y., Zhao, M. D., Xu, J., Zhao, J. X., Zhou, Q., Ge, X. Y., & Xu, Q. (2022). Do urinary metals associate with the homeostasis of inflammatory mediators? Results from the perspective of inflammatory signaling in middle-aged and older adults. Environment International, 163, Article 107237. https://doi.org/10.1016/j.envint.2022.107237
Li, A., Zhao, J. X., Mei, Y. Y., Zhou, Q., Zhao, M. D., Xu, J., Ge, X. Y., & Xu, Q. (2023). Variability, Clearance, and Concentration of Multiple Metals and Risk of Kidney Function Abnormality: A New Integrative Metal Exposure Assessment Approach. Exposure and Health, 15(1), 161-184. https://doi.org/10.1007/s12403-022-00484-2
Liacos, J. W., Kam, W., Delfino, R. J., Schauer, J. J., & Sioutas, C. (2012). Characterization of organic, metal and trace element PM2.5 species and derivation of freeway-based emission rates in Los Angeles, CA. Science of the Total Environment, 435, 159-166. https://doi.org/10.1016/j.scitotenv.2012.06.106
Liang, J. H., Pu, Y. Q., Liu, M. L., Bao, W. W., Zhang, Y. S., Hu, L. X., Huang, S., Jiang, N., Huang, S. Y., Pu, X. Y., Dong, G. H., & Chen, Y. J. (2023). Synergistic impact of co-exposures to whole blood metals on chronic kidney disease in general US adults: a cross-sectional study of the National Health and Nutrition Examination Survey 2011-2020. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-30177-5
Liao, K. W., Pan, W. H., Liou, S. H., Sun, C. W., Huang, P. C., & Wang, S. L. (2019). Levels and temporal variations of urinary lead, cadmium, cobalt, and copper exposure in the general population of Taiwan. Environmental Science and Pollution Research, 26(6), 6048-6064. https://doi.org/10.1007/s11356-018-3911-0
Liu, H. H., Lin, M. H., Liu, P. C., Chan, C. I., & Chen, H. L. (2009). Health risk assessment by measuring plasma malondialdehyde (MDA), urinary 8-hydroxydeoxyguanosine (8-OH-dG) and DNA strand breakage following metal exposure in foundry workers. Journal of Hazardous Materials, 170(2-3), 699-704. https://doi.org/10.1016/j.jhazmat.2009.05.010
Lousa, I., Belo, L., Valente, M. J., Rocha, S., Preguica, I., Rocha-Pereira, P., Beirao, I., Mira, F., Alves, R., Reis, F., & Santos-Silva, A. (2022). Inflammatory biomarkers in staging of chronic kidney disease: elevated TNFR2 levels accompanies renal function
decline. Inflammation Research, 71(5-6), 591-602. https://doi.org/10.1007/s00011-022-01574-2
Lousa, I., Reis, F., Beirao, I., Alves, R., Belo, L., & Santos-Silva, A. (2021). New Potential Biomarkers for Chronic Kidney Disease Management-A Review of the Literature. International Journal of Molecular Sciences, 22(1), Article 43. https://doi.org/10.3390/ijms22010043
Lousa, I., Reis, F., Santos-Silva, A., & Belo, L. (2022). The Signaling Pathway of TNF Receptors: Linking Animal Models of Renal Disease to Human CKD. International Journal of Molecular Sciences, 23(6), Article 3284. https://doi.org/10.3390/ijms23063284
Lousa, I., Reis, F., Viana, S., Vieira, P., Vala, H., Belo, L., & Santos-Silva, A. (2023). TNFR2 as a Potential Biomarker for Early Detection and Progression of CKD. Biomolecules, 13(3), Article 534. https://doi.org/10.3390/biom13030534
Luo, J. H., & Hendryx, M. (2020). Metal mixtures and kidney function: An application of machine learning to NHANES data. Environmental Research, 191, Article 110126. https://doi.org/10.1016/j.envres.2020.110126
Luo, K. H., Wu, C. H., Yang, C. C., Chen, T. H., Tu, H. P., Yang, C. H., & Chuang, H. Y. (2023). Exploring the association of metal mixture in blood to the kidney function and tumor necrosis factor alpha using machine learning methods. Ecotoxicology and Environmental Safety, 265, Article 115528. https://doi.org/10.1016/j.ecoenv.2023.115528
Mehr, M. R., Keshavarzi, B., Moore, F., Sacchi, E., Lahijanzadeh, A. R., Eydivand, S., Jaafarzadeh, N., Naserian, S., Setti, M., & Rostami, S. (2016). Contamination level and human health hazard assessment of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in street dust deposited in Mahshahr, southwest of Iran. Human and Ecological Risk Assessment, 22(8), 1726-1748. https://doi.org/10.1080/10807039.2016.1219221
Mihai, S., Codrici, E., Popescu, I. D., Enciu, A. M., Albulescu, L., Necula, L. G., Mambet, C., Anton, G., & Tanase, C. (2018). Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. Journal of Immunology Research, 2018, Article 2180373. https://doi.org/10.1155/2018/2180373
Mortensen, M. E., Caudill, S. P., Caldwell, K. L., Ward, C. D., & Jones, R. L. (2014). Total and methyl mercury in whole blood measured for the first time in the US population: NHANES 2011-2012. Environmental Research, 134, 257-264. https://doi.org/10.1016/j.envres.2014.07.019
Musial, K., Bargenda, A., Drozdz, D., & Zwolinska, D. (2017). New Markers of Inflammation and Tubular Damage in Children with Chronic Kidney Disease. Disease Markers, 2017, Article 9389432. https://doi.org/10.1155/2017/9389432
Nagasawa, Y., Yamamoto, R., Rakugi, H., & Isaka, Y. (2012). Cigarette smoking and chronic kidney diseases. Hypertension Research, 35(3), 261-265. https://doi.org/10.1038/hr.2011.205
Nan, Y. X., Yang, J. L., Ma, L., Jin, L. M., & Bai, Y. A. (2022). Associations of nickel exposure and kidney function in US adults, NHANES 2017-2018. Journal of Trace Elements in Medicine and Biology, 74, Article 127065. https://doi.org/10.1016/j.jtemb.2022.127065
Nan, Y. X., Yang, J. L., Yang, J. Y., Wei, L. L., & Bai, Y. N. (2023). Associations Between Individual and Combined Metal Exposures in Whole Blood and Kidney Function in US Adults Aged 40 Years and Older. Biological Trace Element Research. https://doi.org/10.1007/s12011-023-03722-z
Niewczas, M. A., Gohda, T., Skupien, J., Smiles, A. M., Walker, W. H., Rosetti, F., Cullere, X., Eckfeldt, J. H., Doria, A., Mayadas, T. N., Warram, J. H., & Krolewski, A. S. (2012). Circulating TNF Receptors 1 and 2 Predict ESRD in Type 2 Diabetes. Journal of the American Society of Nephrology, 23(3), 507-515. https://doi.org/10.1681/asn.2011060627
Orr, S. E., & Bridges, C. C. (2017). Chronic Kidney Disease and Exposure to Nephrotoxic Metals. International Journal of Molecular Sciences, 18(5), Article 1039. https://doi.org/10.3390/ijms18051039
Orth, S. R. (2002). Smoking and the kidney. Journal of the American Society of Nephrology, 13(6), Article Unsp 1046-6673/1306-1663. https://doi.org/10.1097/01.Asn.0000018401.82863.Fd
Owens, E. P., Healy, H. G., Vesey, D. A., Hoy, W. E., & Gobe, G. C. (2022). Targeted biomarkers of progression in chronic kidney disease. Clinica Chimica Acta, 536, 18-28. https://doi.org/10.1016/j.cca.2022.08.025
Peng, S. X., Lu, T. J., Liu, Y. S., Li, Z. Y., Liu, F. F., Sun, J. H., Chen, M. J., Wang, H. J., & Xiang, H. (2022). Short-term exposure to fine particulate matter and its constituents may affect renal function via oxidative stress: A longitudinal panel study. Chemosphere, 293, Article 133570. https://doi.org/10.1016/j.chemosphere.2022.133570
Pickering, A. M., Vojtovich, L., Tower, J., & Davies, K. J. A. (2013). Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radical Biology and Medicine, 55, 109-118. https://doi.org/10.1016/j.freeradbiomed.2012.11.001
Pierce, C. B., Muñoz, A., Ng, D. K., Warady, B. A., Furth, S. L., & Schwartz, G. J. (2021). Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney International, 99(4), 948-956. https://doi.org/10.1016/j.kint.2020.10.047
Pollack, A. Z., Mumford, S. L., Mendola, P., Perkins, N. J., Rotman, Y., Wactawski-Wende, J., & Schisterman, E. F. (2015). Kidney Biomarkers Associated with Blood Lead, Mercury, and Cadmium in Premenopausal Women: A Prospective Cohort Study. Journal of Toxicology and Environmental Health-Part a-Current Issues, 78(2), 119-131. https://doi.org/10.1080/15287394.2014.944680
Pollack, A. Z., Mumford, S. L., Sjaarda, L., Perkins, N. J., Malik, F., Wactawski-Wende, J., & Schisterman, E. F. (2017). Blood lead, cadmium and mercury in relation to homocysteine and C-reactive protein in women of reproductive age: a panel study. Environmental Health, 16, Article 84. https://doi.org/10.1186/s12940-017-0293-6
Puthumana, J., Thiessen-Philbrook, H., Xu, L. Y., Coca, S. G., Garg, A. X., Himmelfarb, J., Bhatraju, P. K., Ikizler, T. A., Siew, E. D., Ware, L. B., Liu, K. D., Go, A. S., Kaufman, J. S., Kimmel, P. L., Chinchilli, V. M., Cantley, L. G., & Parikh, C. R. (2021). Biomarkers of inflammation and repair in kidney disease progression. Journal of Clinical Investigation, 131(3), Article e139927. https://doi.org/10.1172/jci139927
Rafiee, A., Delgado-Saborit, J. M., Aquilina, N. J., Amiri, H., & Hoseini, M. (2022). Assessing oxidative stress resulting from environmental exposure to metals (Oids) in a
middle Eastern population. Environmental Geochemistry and Health, 44(8), 2649-2668. https://doi.org/10.1007/s10653-021-01065-z
Ranasinghe, R., Mathai, M., & Zulli, A. (2023). Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sciences, 318, Article 121466. https://doi.org/10.1016/j.lfs.2023.121466
Rao, K., Tang, T., Zhang, X., Wang, M., Liu, J. F., Wu, B., Wang, P., & Ma, Y. L. (2021). Spatial-temporal dynamics, ecological risk assessment, source identification and interactions with internal nutrients release of heavy metals in surface sediments from a large Chinese shallow lake. Chemosphere, 282, Article 131041. https://doi.org/10.1016/j.chemosphere.2021.131041
Rasking, L., Vanbrabant, K., Bové, H., Plusquin, M., De Vusser, K., Roels, H. A., & Nawrot, T. S. (2022). Adverse Effects of fine particulate matter on human kidney functioning: a systematic review. Environmental Health, 21(1), Article 24. https://doi.org/10.1186/s12940-021-00827-7
Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157-184. https://doi.org/10.1002/jcb.26234
Robles-Osorio, M. L., Sabath-Silva, E., & Sabath, E. (2015). Arsenic-mediated nephrotoxicity. Renal Failure, 37(4), 542-547. https://doi.org/10.3109/0886022x.2015.1013419
Robles, N. R., Gomez, J. L., Pino, G. G., Valladares, J., Gallego, R. H., & Cerezo, I. (2021). Alpha-1-microglobulin: Prognostic value in chronic kidney disease. Medicina Clinica, 157(8), 368-370. https://doi.org/10.1016/j.medcli.2020.06.061
Rodig, N. M., McDermott, K. C., Schneider, M. F., Hotchkiss, H. M., Yadin, O., Seikaly, M. G., Furth, S. L., & Warady, B. A. (2014). Growth in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children Study. Pediatric Nephrology, 29(10), 1987-1995. https://doi.org/10.1007/s00467-014-2812-9
Sabath, E., & Robles-Osorio, M. L. (2012). Renal health and the environment: heavy metal nephrotoxicity. Nefrologia, 32(3), 279-286. https://doi.org/10.3265/Nefrologia.pre2012.Jan.10928
Sabbisetti, V. S., Waikar, S. S., Antoine, D. J., Smiles, A., Wang, C., Ravisankar, A., Ito, K., Sharma, S., Ramadesikan, S., Lee, M., Briskin, R., De Jager, P. L., Ngo, T. T., Radlinski, M., Dear, J. W., Park, K. B., Betensky, R., Krolewski, A. S., & Bonventre, J. V. (2014). Blood Kidney Injury Molecule-1 Is a Biomarker of Acute and Chronic Kidney Injury and Predicts Progression to ESRD in Type I Diabetes. Journal of the American Society of Nephrology, 25(10), 2177-2186. https://doi.org/10.1681/asn.2013070758
Sabeti, Z., Ansarin, K., Seyedrezazadeh, E., Jafarabadi, M. A., Zafari, V., Dastgiri, S., Shakerkhatibi, M., Gholampour, A., Khamnian, Z., Sepehri, M., Dahim, M., Sharbafi, J., & Hakimi, D. (2021). Acute responses of airway oxidative stress, inflammation, and hemodynamic markers to ambient PM2.5 and their trace metal contents among healthy adolescences: A panel study in highly polluted versus low polluted regions. Environmental Pollution, 288, Article 117797. https://doi.org/10.1016/j.envpol.2021.117797
Sallsten, G., Ellingsen, D. G., Berlinger, B., Weinbruch, S., & Barregard, L. (2022). Variability of lead in urine and blood in healthy individuals. Environmental Research, 212, Article 113412. https://doi.org/10.1016/j.envres.2022.113412
Sanders, A. P., Mazzella, M. J., Malin, A. J., Hair, G. M., Busgang, S. A., Saland, J. M., & Curtin, P. (2019). Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12-19 in NHANES 2009-2014. Environment International, 131, Article 104993. https://doi.org/10.1016/j.envint.2019.104993
Sarnak, M. J., Katz, R., Ix, J. H., Kimmel, P. L., Bonventre, J. V., Schelling, J., Cushman, M., Vasan, R. S., Waikar, S. S., Greenberg, J. H., Parikh, C. R., Coca, S. G., Sabbisetti, V., Jogalekar, M. P., Rebholz, C., Zheng, Z. H., Gutierrez, O. M., & Shlipak, M. G. (2022). Plasma Biomarkers as Risk Factors for Incident CKD. Kidney International Reports, 7(7), 1493-1501. https://doi.org/10.1016/j.ekir.2022.03.018
Sasaki, A., Oshima, Y., & Fujimura, A. (2007). An approach to elucidate potential mechanism of renal toxicity of arsenic trioxide. Experimental Hematology, 35(2), 252-262. https://doi.org/10.1016/j.exphem.2006.10.004
Satarug, S., & Moore, M. R. (2004). Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environmental Health Perspectives, 112(10), 1099-1103. https://doi.org/10.1289/ehp.6751
Satarug, S., Vesey, D. A., & Gobe, G. C. (2017). Kidney Cadmium Toxicity, Diabetes and High Blood Pressure: The Perfect Storm. Tohoku Journal of Experimental Medicine, 241(1), 65-87. https://doi.org/10.1620/tjem.241.65
Satarug, S., Vesey, D. A., Nishijo, M., Ruangyuttikarn, W., & Gobe, G. C. (2019). The inverse association of glomerular function and urinary beta 2-MG excretion and its implications for cadmium health risk assessment. Environmental Research, 173, 40-47. https://doi.org/10.1016/j.envres.2019.03.026
Schei, J., Stefansson, V. T. N., Eriksen, B. O., Jenssen, T. G., Solbu, M. D., Wilsgaard, T., & Melsom, T. (2017). Association of TNF Receptor 2 and CRP with GFR Decline in the General Nondiabetic Population. Clinical Journal of the American Society of Nephrology, 12(4), 624-634. https://doi.org/10.2215/cjn.09280916
Schmidt, I. M., Srivastava, A., Sabbisetti, V., McMahon, G. M., He, J., Chen, J., Kusek, J. W., Taliercio, J., Ricardo, A. C., Hsu, C. Y., Kimmel, P. L., Liu, K. T. D., Miff, T. E., Nelson, R. G., Vasan, R. S., Xie, D. W., Zhang, X. M., Palsson, R., Stillman, I. E., . . . Invest, C. S. (2022). Plasma Kidney Injury Molecule 1 in CKD: Findings From the Boston Kidney Biopsy Cohort and CRIC Studies. American Journal of Kidney Diseases, 79(2), 231-+. https://doi.org/10.1053/j.ajkd.2021.05.013
Schnaper, H. W. (2017). The Tubulointerstitial Pathophysiology of Progressive Kidney Disease. Advances in Chronic Kidney Disease, 24(2), 107-116. https://doi.org/10.1053/j.ackd.2016.11.011
Schrauben, S. J., Shou, H. C., Zhang, X. M., Anderson, A. H., Bonventre, J. V., Chen, J., Coca, S., Furth, S. L., Greenberg, J. H., Gutierrez, O. M., Ix, J. H., Lash, J. P., Parikh, C. R., Rebholz, C. M., Sabbisetti, V., Sarnak, M. J., Shlipak, M. G., Waikar, S. S., Kimmel, P. L., . . . Chronic Renal Insufficiency, C. (2021). Association of Multiple Plasma Biomarker Concentrations with Progression of Prevalent Diabetic Kidney Disease: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Journal of the American Society of Nephrology, 32(1), 115-126. https://doi.org/10.1681/asn.2020040487
Seyahi, N., Kahveci, A., Bolayirli, M., Akman, C., Altiparmak, M. R., Apaydin, S., Ataman, R., Sariyar, M., Serdengecti, K., & Erek, E. (2007). Coronary artery calcification and chronically decreased GFR in living kidney donors. American Journal of Kidney Diseases, 49(1), 143-152. https://doi.org/10.1053/j.ajkd.2006.10.016
Shroff, R., Degi, A., Kerti, A., Kis, E., Cseprekal, O., Tory, K., Szabo, A. J., & Reusz, G. S. (2013). Cardiovascular risk assessment in children with chronic kidney disease. Pediatric Nephrology, 28(6), 875-884. https://doi.org/10.1007/s00467-012-2325-3
Sly, P. D., & Flack, F. (2008). Susceptibility of Children to Environmental Pollutants. In D. O. Carpenter (Ed.), Environmental Challenges in the Pacific Basin (Vol. 1140, pp. 163-183). https://doi.org/10.1196/annals.1454.017
Soderland, P., Lovekar, S., Weiner, D. E., Brooks, D. R., & Kaufmann, J. S. (2010). Chronic Kidney Disease Associated With Environmental Toxins and Exposures. Advances in Chronic Kidney Disease, 17(3), 254-264. https://doi.org/10.1053/j.ackd.2010.03.011
Sturges, W. T., & Barrie, L. A. (1987). LEAD-206/207 ISOTOPE RATIOS IN THE ATMOSPHERE OF NORTH-AMERICA AS TRACERS OF UNITED-STATES AND CANADIAN EMISSIONS. Nature, 329(6135), 144-146. https://doi.org/10.1038/329144a0
Tanasa, I., Cazacu, M., & Sluser, B. (2023). Air Quality Integrated Assessment: Environmental Impacts, Risks and Human Health Hazards. Applied Sciences-Basel, 13(2), Article 1222. https://doi.org/10.3390/app13021222
Tellez-Plaza, M., Jones, M. R., Dominguez-Lucas, A., Guallar, E., & Navas-Acien, A. (2013). Cadmium Exposure and Clinical Cardiovascular Disease: A Systematic Review. Current Atherosclerosis Reports, 15(10), Article 356. https://doi.org/10.1007/s11883-013-0356-2
Tian, X. Y., Shan, X. B., Ma, L., Zhang, C. Y., Wang, M., Zheng, J., Lei, R. Y., He, L., Yan, J., Li, X., Bai, Y. J., Hu, K. Q., Li, S., Niu, J. P., & Luo, B. (2023). Mixed heavy metals exposure affects the renal function mediated by 8-OHG: A cross-sectional study in rural residents of China. Environmental Pollution, 317, Article 120727. https://doi.org/10.1016/j.envpol.2022.120727
Tomas-Simo, P., D'Marco, L., Romero-Parra, M., Tormos-Munoz, M. C., Saez, G., Torregrosa, I., Estan-Capell, N., Miguel, A., Gorriz, J. L., & Puchades, M. J. (2021). Oxidative Stress in Non-Dialysis-Dependent Chronic Kidney Disease Patients. International Journal of Environmental Research and Public Health, 18(15), Article 7806. https://doi.org/10.3390/ijerph18157806
Tsai, H. J., Hung, C. H., Wang, C. W., Tu, H. P., Li, C. H., Tsai, C. C., Lin, W. Y., Chen, S. C., & Kuo, C. H. (2021). Associations among Heavy Metals and Proteinuria and Chronic Kidney Disease. Diagnostics, 11(2), Article 282. https://doi.org/10.3390/diagnostics11020282
Tuttle, K. R., Alicic, R. Z., Duru, O. K., Jones, C. R., Daratha, K. B., Nicholas, S. B., McPherson, S. M., Neumiller, J. J., Bell, D. S., Mangione, C. M., & Norris, K. C. (2019). Clinical Characteristics of and Risk Factors for Chronic Kidney Disease Among Adults and Children An Analysis of the CURE-CKD Registry. Jama Network Open, 2(12), Article e1918169. https://doi.org/10.1001/jamanetworkopen.2019.18169
Uriu, K., Kaizu, K., Qie, Y. L., Ito, A., Takagi, I., Suzuka, K., Inada, Y., Hashimoto, O., & Eto, S. (2000). Long-term oral intake of low-dose cadmium exacerbates age-related impairment of renal functional reserve in rats. Toxicology and Applied Pharmacology, 169(2), 151-158. https://doi.org/10.1006/taap.2000.9063
Vaidya, V. S., Ozer, J. S., Dieterle, F., Collings, F. B., Ramirez, V., Troth, S., Muniappa, N., Thudium, D., Gerhold, D., Holder, D. J., Bobadilla, N. A., Marrer, E., Perentes, E., Cordier, A., Vonderscher, J., Maurer, G., Goering, P. L., Sistare, F. D., & Bonventre, J. V. (2010). Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nature Biotechnology, 28(5), 478-U135. https://doi.org/10.1038/nbt.1623
Vaidya, V. S., Waikar, S. S., Ferguson, M. A., Collings, F. B., Sunderland, K., Gioules, C., Bradwin, G., Matsouaka, R., Betensky, R. A., Curhan, G. C., & Bonventre, J. V. (2008). Urinary Biomarkers for Sensitive and Specific Detection of Acute Kidney Injury in Humans. Cts-Clinical and Translational Science, 1(3), 200-208. https://doi.org/10.1111/j.1752-8062.2008.00053.x
van't Erve, T. J., Lih, F. B., Jelsema, C., Deterding, L. J., Eling, T. E., Mason, R. P., & Kadiiska, M. B. (2016). Reinterpreting the best biomarker of oxidative stress: The 8-iso-prostaglandin F-2 alpha/prostaglandin F-2 alpha ratio shows complex origins of lipid peroxidation biomarkers in animal models. Free Radical Biology and Medicine, 95, 65-73. https://doi.org/10.1016/j.freeradbiomed.2016.03.001
Van Laecke, S., & Van Biesen, W. (2017). Smoking and chronic kidney disease: seeing the signs through the smoke? Nephrology Dialysis Transplantation, 32(3), 403-405. https://doi.org/10.1093/ndt/gfw448
Vielhauer, V., Stavrakis, G., & Mayadas, T. N. (2005). Renal cell-expressed TNF receptor 2, not receptor 1, is essential for the development of glomerulonephritis. Journal of Clinical Investigation, 115(5), 1199-1209. https://doi.org/10.1172/jci200523348
Weaver, V. M., Kotchmar, D. J., Fadrowski, J. J., & Silbergeld, E. K. (2016). Challenges for environmental epidemiology research: are biomarker concentrations altered by kidney function or urine concentration adjustment? Journal of Exposure Science and Environmental Epidemiology, 26(1), 1-8. https://doi.org/10.1038/jes.2015.8
Webster, A. C., Nagler, E. V., Morton, R. L., & Masson, P. (2017). Chronic kidney disease. Lancet, 389(10075), 1238-1252. https://doi.org/10.1016/s0140-6736(16)32064-5
Webster, L., Larive, B., Gassman, J., Bullen, A., Weisbord, S. D., Palevsky, P. M., Fried, L. F., Raphael, K., Isakova, T., & Ix, J. H. (2020). A Simple Equation to Estimate Urinary Flow Rate Using Urine Creatinine. American Journal of Nephrology, 51(5), 395-400. https://doi.org/10.1159/000506728
Weidemann, D., Kuo, C. C., Navas-Acien, A., Abraham, A. G., Weaver, V., & Fadrowski, J. (2015). Association of arsenic with kidney function in adolescents and young adults: Results from the National Health and Nutrition Examination Survey 2009-2012. Environmental Research, 140, 317-324. https://doi.org/10.1016/j.envres.2015.03.030
Weidemann, D. K., Weaver, V. M., & Fadrowski, J. J. (2016). Toxic environmental exposures and kidney health in children. Pediatric Nephrology, 31(11), 2043-2054. https://doi.org/10.1007/s00467-015-3222-3
Wieduwilt, M. J., & Moasser, M. M. (2008). The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cellular and Molecular Life Sciences, 65(10), 1566-1584. https://doi.org/10.1007/s00018-008-7440-8
Wilhelm, S. M., & Kale-Pradhan, P. B. (2011). Estimating Creatinine Clearance: A Meta-analysis. Pharmacotherapy, 31(7), 658-664. https://doi.org/10.1592/phco.31.7.658
Willers, S., Gerhardsson, L., & Lundh, T. (2005). Environmental tobacco smoke (ETS) exposure in children with asthma - relation between lead and cadmium, and cotinine concentrations in urine. Respiratory Medicine, 99(12), 1521-1527. https://doi.org/10.1016/j.rmed.2005.03.017
Xu, W. Q., Wang, S. P., Jiang, L. P., Sun, X. C., Wang, N. N., Liu, X. F., Yao, X. F., Qiu, T. M., Zhang, C., Li, J., Deng, H. Y., & Yang, G. (2022). The influence of PM<sub>2.5</sub> exposure on kidney diseases. Human & Experimental Toxicology, 41, Article 09603271211069982. https://doi.org/10.1177/09603271211069982
Yuan, T. H., Jhuang, M. J., Yeh, Y. P., Chen, Y. H., Lu, S. S., & Chan, C. C. (2021). Relationship between renal function and metal exposure of residents living near the No. 6 Naphtha Cracking Complex: A cross-sectional study. Journal of the Formosan Medical Association, 120(10), 1845-1854. https://doi.org/10.1016/j.jfma.2021.04.009
Yuan, Y., Long, P. P., Liu, K., Xiao, Y., He, S. Q., Li, J., Mo, T. T., Liu, Y. Y., Yu, Y. Q., Wang, H., Zhou, L., Liu, X. Z., Yang, H. D., Li, X. L., Min, X. W., Zhang, C., Zhang, X. M., Pan, A., He, M. A., . . . Wu, T. C. (2020). Multiple plasma metals, genetic risk and serum C-reactive protein: A metal-metal and gene-metal interaction study. Redox Biology, 29, Article 101404. https://doi.org/10.1016/j.redox.2019.101404
Zabetian, A., & Coca, S. G. (2021). Plasma and urine biomarkers in chronic kidney disease: closer to clinical application. Current Opinion in Nephrology and Hypertension, 30(6), 531-537. https://doi.org/10.1097/mnh.0000000000000735
Zappitelli, M., Juarez, M., Castillo, L., Coss-Bu, J., & Goldstein, S. L. (2009). Continuous renal replacement therapy amino acid, trace metal and folate clearance in critically ill children. Intensive Care Medicine, 35(4), 698-706. https://doi.org/10.1007/s00134-009-1420-9
Zhang, F., Liu, H., Liu, D., Liu, Y. X., Li, H. Q., Tan, X., Liu, F. Y., Peng, Y. M., & Zhang, H. Q. (2017). Effects of RAAS Inhibitors in Patients with Kidney Disease. Current Hypertension Reports, 19(9), Article 72. https://doi.org/10.1007/s11906-017-0771-9
Zhang, W. R., & Parikh, C. R. (2019). Biomarkers of Acute and Chronic Kidney Disease. In M. T. Nelson & K. Walsh (Eds.), Annual Review of Physiology, Vol 81 (Vol. 81, pp. 309-333). https://doi.org/10.1146/annurev-physiol-020518-114605
Zheng, L. Y., Sanders, A. P., Saland, J. M., Wright, R. O., & Arora, M. (2017). Environmental exposures and pediatric kidney function and disease: A systematic review. Environmental Research, 158, 625-648. https://doi.org/10.1016/j.envres.2017.06.029
Zhu, H. H., Tang, X. Y., Gu, C. Y., Chen, R. M., Liu, Y. D., Chu, H. Y., & Zhang, Z. D. (2024). Assessment of human exposure to cadmium and its nephrotoxicity in the Chinese population. Science of the Total Environment, 918, Article 170488. https://doi.org/10.1016/j.scitotenv.2024.170488
ASTDR. 2020. Agency for toxic substances and disease registry: Lead.
ASTDR. 2022. Agency for toxic substances and disease registry : Mercury.
ASTDR. 2012. Agency for toxic substances and disease registry: Cadmium.
ASTDR. 2011. Agency for toxic substances and disease registry: Arsenic.
ASTDR. 2023. Agency for toxic substances and disease registry: Cobalt
ASTDR. 2016. Agency for toxic substances and disease registry: Nickel
CDC. 2023. Childhood Lead Poisoning Prevention. Available:
https://www.cdc.gov/nceh/lead/prevention/sources/water.htm
衛生福利部國民健康署. 2022. 早期慢性腎臟病照護手冊. Available:
https://health99.hpa.gov.tw/material/7255
國家衛生研究院. 2020. 慢性腎臟病防治與透析之政策研議. Available:
https://forum.nhri.edu.tw/sdm_downloads/110-2-%E6%85%A2
李仁慈. 2015. 慢性腎臟病人身體症狀、睡眠品質相關因素之探討.
Yang T-M. 2016. 高鹽飲食對慢性腎臟病腸道菌叢及發炎的影響.
Chiang H-H. 2015. 慢性腎臟病患實踐低蛋白飲食之生活經驗.
勞動部職業安全衛生署. 2022. 職業性鈷及其化合物中毒認定參考指引.
Available:
https://www.osha.gov.tw/48110/48363/133456/48395/48399/lpsimplelist?Page=5&PageSize=10
勞動部職業安全衛生署. 2022. 職業暴露鎘及其化合物引起之中毒認定參考指引.
Available: https://www.osha.gov.tw/48110/48363/133456/48395/48399/lpsimplelist?Page=4&PageSize=10
勞動部職業安全衛生署. 2022. 職業暴露鎳及其化合物引起之疾病認定參考指引.
Available: https://www.osha.gov.tw/48110/48363/133456/48395/48399/lpsimplelist?Page=2&PageSize=10
環境部. 2023. 空氣品質標準.
Available: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0130005
校內:2029-08-21公開