簡易檢索 / 詳目顯示

研究生: 余思瑤
Yu, Szu-Yao
論文名稱: 硫酸鈣/磷酸鈣複合材骨水泥性質研究(II)
Investigation of Properties of Calcium Sulfate/Calcium Phosphate Composite Cement (II)
指導教授: 陳瑾惠
Chern Lin, Jiin-Huey
共同指導教授: 朱建平
Ju, Chien-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 123
中文關鍵詞: 骨水泥
外文關鍵詞: CBC
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷酸鈣骨水泥具有優良的生物相容性與適當的機械強度,並具有骨傳導性,但在人體內吸收速率相當慢使得骨細胞不易取代;而硫酸鈣骨水泥在體內溶解速率快,溶解的同時釋出鈣離子,鈣離子的釋出使得材料具有誘骨性,且硫酸鈣也具有良好的生物相容性;因此磷酸鈣和硫酸鈣混合後,利用硫酸鈣快速被吸收當作製造骨基質原料及產生空洞效果的特性,有利於新骨長入。
    本實驗第一部分探討54CBC、45CBC添加不同濃度的硬化劑以不同粉液比混合的各項性質比較。第二部份則針對第一部分中較佳性質的硬化劑條件,對複合材做短時間以及長時間浸泡Hanks’ solution各項性質變化之探討。
    54CBC複合材添加C-5 硬化劑, L/P-5,浸泡Hanks’ solution一天後具有較佳抗壓強度(約28MPa),並有適當的工作與硬化時間且不會崩解。而長時間浸泡下,由於孔隙率隨著浸泡時間增長而提高,導致複合材骨水泥的抗壓強度迅速下降,而在ISO 10993-5規範下細胞毒性測試結果均為80%以上。

    Calcium phosphate cement has excellent biocompatibility and adequate mechanical properties. It has also shown osteoconductive but has slow resorption in the human body. Calcium sulfate is a kind of materials that has excellent biocompatibility and fast resorption in human body. When calcium sulfate dissolved, the calcium ion was released that makes calcium phosphate composite with osteoinductive property. The absorpted calcium sulfate will be used as materials of bone matrix. It will make porous effect in composite. The newly formed bone integrates into the implant along with the pore and contacts directly with crystals of calcium phosphate.
    The first part of experiment is comparison of the property of 54CBC and 45CBC in view of the different concentration of hardening solution and the different liquid to powder ratio. The second part of experiment is to study composite soaking in Hanks’ solution with short time and long time of mechanism, mechanical properties and physical properties.
    54CBC with C-5 hardening solution, L/P-5 soaking in Hanks’ solution one day have superior compressive strength (about 28MPa). It also has adequate working/setting time and non-dispersion. In soaking long time, the porosity increase with soaking time increase, resulting that the compressive strength decrease quickly. Furthermore, the result of cytotoxicity (ISO 10993-5) show good biocompatibility.

    中文摘要 I Abstract II 誌謝 III 總目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 總序論 1 1-1 生醫材料的定義 1 1-2 生醫材料的分類 2 1-2-1 依製造原料及化學組成分類 2 1-2-2 依活性分類 5 1-3 生醫材料之發展 9 1-4 生醫陶瓷 13 1-5 人體硬組織成分及性質簡介 16 1-6 骨科植入材的種類及性質要求 23 1-6-1 骨科植入材的來源種類 23 1-6-2 骨取代物在生物學上的要求 24 1-6-3 骨取代材的性質及製程要求 25 第二章 文獻回顧 27 2-1 硫酸鈣簡介 27 2-1-1 硫酸鈣的發展 27 2-1-2 硫酸鈣的性質簡介 28 2-1-3 硫酸鈣骨水泥的優點及缺點 31 2-2 磷酸鈣簡介 35 2-2-1 磷酸鈣鹽類生醫陶瓷的分類與發展 35 2-2-2 磷酸鈣鹽類的性質簡介 36 2-2-3 雙相磷酸鈣骨水泥 38 2-2-4 磷酸鈣骨水泥的優點與缺點 40 2-3 磷酸鈣系與硫酸鈣系形成之多相複合生醫材料 45 2-3-1 CaSO4・1/2H2O/ HA composite 45 2-3-2 CaSO4・1/2H2O/α-TCP composite 47 2-3-3 CaSO4・2H2O/α-TCP composite 48 2-3-4 TTCP / DCPA/CaSO4・1/2H2O composite 50 2-4 研究目的 57 第三章 實驗原理及步驟 58 3-1 實驗使用藥品 58 3-2 實驗步驟與分析方法 58 3-2-1 磷酸鈣與硫酸鈣複合材粉末製備 58 3-2-2 抗壓試片製作與強度測試 58 3-2-3 工作與硬化時間測量 59 3-2-4 pH值的量測 59 3-2-5 X-Ray diffraction(XRD)分析 60 3-2-6 Scanning Electron Microscopy(SEM)表面觀察 61 3-2-7 元素分佈分析(mapping)、EDS分析 62 3-2-8 孔隙度(Porosity)、重量損失測試 62 3-2-9 細胞毒性測試 63 第四章 結果與討論 71 4-1 複合材骨水泥添加不同濃度硬化劑浸泡人工體液(Simulated body fluid,SBF)一天後性質探討 71 4-1-1 複合材骨水泥工作及硬化時間測量結果 71 4-1-2 複合材浸泡SBF一天後抗壓強度分析 72 4-1-3 複合材浸泡SBF一天後XRD分析 73 4-1-4 複合材浸泡SBF一天後SEM微結構觀察 73 4-2 複合材骨水泥初始反應分析 83 4-2-1 複合材骨水泥崩解性測試 83 4-2-2 複合材浸泡SBF短時間的抗壓強度分析 83 4-2-3 複合材骨水泥反應初期pH值變化 84 4-2-4 複合材浸泡SBF短時間的XRD分析 85 4-2-5 複合材浸泡SBF短時間的SEM微結構觀察 86 4-3 複合材骨水泥長時間浸泡人工體液的性質分析 92 4-3-1 複合材骨水泥長時間浸泡SBF的抗壓強度分析 92 4-3-2 複合材長時間浸泡SBF的pH值變化 93 4-3-3 複合材骨水泥浸泡SBF長時間的XRD分析 94 4-3-4 複合材長時間浸泡SBF的SEM微結構觀察 95 4-3-5 複合材長時間浸泡SBF的孔隙率、重量損失 96 4-4 複合材骨水泥細胞毒性測試 106 第五章 結論 108 參考文獻 109

    Albee F, Morrison H. Studies in bone growth.Annals of Surg 1920;71:32-38.
    Amathieu L. and Boistelle R., Crystallization Kinetics of Gypsum from Dense Suspension of Hemihydrate in Water, Journal of Crystal Growth,1988;88: 184.
    Block M.S, Kent T.N, Guerra. Implants in dentistry. W.B. Saunders Company,1997
    Bohner M., Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 2000;31:S-D37-47.
    Bohner M. and Baumgart M., Theoretical Model to Determine the Effects of Geometrical Factors on the Resorption of Calcium Phosphate Bone Substitutes, Biomaterials, 2004;25[17] 3569–3582.
    Bohner M., Gbureck U., Barralet J.E. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment Biomaterials, 2005; 26 6423–6429
    Bohner M., New hydraulic cements based on α-tricalcium phosphate – calcium sulfate dihydrate mixtures; Biomaterials 2004;25 741–749.
    Breed AL., Experimental production of vascular hypotension, and bone marrow and fat embolism with methylmethacrylate cement. Traumatic hypertension of bone. Clin Orthop, 1974; 102: 227-44.
    Brown WE, Chow LC., A new calcium phosphate setting cement. J Dent Res Abs 1983;207:62-672.
    Brown WE, Chow LC., Combinations of sparingly soluble calcium phosphates in slurries and paste as mineralizers and cements. US Patent 1986, No. 4612053.
    Brown WE, Chow LC., Dental resptorative cement pastes. US. Patent 1985, No. 4518430.
    Brown WE, Chow LC., Singular points in the chemistry of teeth. J Dent. Res 1975;54:74.
    Chow LC., Calcium phosphate materials: reactor response ; Adv Dent Res 2(1):181-184, August, 1988
    Chow LC, Takagi S., Calcium phosphate hydroxyapatite precursor and methosd for making and using the same. US Patent 1996, No.5542973.
    Chow LC. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue 1991;99(10):954-964.
    Chow L C, J. Ceram. Soc. Japan Int. Edn. 99 (1992) 927.
    Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th annal international biomaterial symposium. April 1974:20-24.
    Costantino PD, Friedman CD: Synthetic bone graft substitutes. Otolaryngol Clin North Am 1994;27:1037-1074.
    Driskell TD, Heller AL, Koenigs J. Dental treatments. US Patent 1975, No. 3913229.
    de Groot K. Medical applications of calcium phosphate bioceramics. The centennial memorial issue of the ceramic society of Japan 1991;99:943-953.
    Fernaâ ndez* E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA. Calcium phosphate bone cements for clinical applications, Journal of Materials Science: Materials in Medicine 10 (1999) 169±183
    Fukase Y, EANES' E.D, TAKAGI3 S., CHOW L.C, and BROWN W.E.; Setting Reactions and Compressive Strengths of Calcium Phosphate Cements;J Dent Res 69(12):1852-1856, December, 1990.
    Getter L, Bhaskar S, Cutright D, Perez B, Brady J, Driskell T, O’Hara M. Three biodegradable calcium phosphate slurry implants in bone. J Oral Surg 1972;30:263-268.
    Hench LL, Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487-1510.
    Hulbert SF, Hench LL, Forbers D, Bowman LS. History of bioceramics. Ceram Internat. 1982;8:131-140.
    Jarcho M. CaP ceramics as hard tissue prosthetics. Clin Orthop 1981;157:259-78.
    Jarcho M. Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 1976;11:2027-35.
    Jarcho M, Kay J, Gumaer K, Doremus R, Drobeck H. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Bioengineering 1977;1:79-92.
    Jonck LM, Grobbelaar CJ. "The biological compatibility of glass ionomer cement in joint replacement." Clin. Mater. , 1989; 4: 85-107.
    Kokubo T. "Recent progress in glass-based materials for biomedical applications." The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991.
    Köster K, Karbe E, Kramer H, Heide H, König R. Experimenteller knochenersatz durch resorbierbare calcium phosphate keramik. Langenbecks Arch Chir 1976;341:77-86.
    Lewis K. N, Thomas M. V, Puleo D. A.; Mechanical and degradation behavior of polymer-calcium sulfate composites. J Mater Sci: Mater Med 2006;17: 531–537.
    Lewry A.J. and J. Williamsoon, "The setting of gypsum plaster partIII the effect of additives and impurities."J of materials science. Vol 29, p6085~6090, 1994.
    Monma H, Goto M and Kohmura T , Gypsum & Lime, 1984 No.188, 11-16
    Moore W.R, Graves S.E, Bain G.I. Synthetic Bone Graft Substitutes. ANZ J. Surg 71: 354-361,2001.
    Myerson A.S. Handbook of Industrial Crystallization Butterworth Heinemann Series, Chemical Engineering. USA, 1993.
    Nilsson M., Ferna´ndez E. Sarda S. Lidgren 1L., Planell J.A. "Characterization of a novel calcium phosphate/sulphate bone cement." J Biomed Mater Res 61: 600–607, 2002.
    Nilsson M., Wielanek L., J.S. Wang, K. E. Tanner, L. Lidgren. "Factors Influencing the Compressive Strength of an Injectable Calcium Sulfate-Hydroxyapatite Cement." Journal of Materials Science: Materials in Medicine 14: 399-404, 2003.
    Park JB. Biomaterials, An Introduction. Plenum Press. New York, 1979.
    Park JB. Biomaterials science and engineering. Plenum Press, New York and London, 1985.
    Park JB, Bronzino JD. Biomaterials principles and applications. CRC Press, New York, 2003.
    Park JB, Lakes RS. Biomaterials: an introduction. Plenum Press, 2nd ed., New York, 1992.
    Peelen J, Rejda B, Vermeiden J, de Groot K. Sintered tricalcium phosphate as bioceramic. Science of ceramics 1977;9:226-236.
    Ray R, Degge J, Gloyd P, Mooney G. Bone regeneration. J Bone Joint Surg 1952;34A:638-647.
    Rateitschak KH, Wolf HF. Color Atlas of Dental Medicine. Thieme Medical Publishers, 1995.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science. Academic Press, California, 1996;222-223.
    Roy D, Linnehan S. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974;247:220-222.
    Silver FH. Biomaterials, medical devices, and tissue engineering: an integrated approach. Chapman & Hall, New York, 1994.
    Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. ACTA Orthopaed Scandin Supplem 1993;64:1-58.
    Song H.Y, Esfakur Rahman A.H.M., Lee B.T. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid, J Mater Sci: Mater Med 20:935–941,2009.
    Takag i S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 19 (1998) 1593Ð1599
    Vereecke G, Lemaitre J. Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO3-H2O. J Cryst Growth 1990;104:820-832.
    Verlaan JJ, Oner FC, Slootweg PJ, Verbout AJ, Dhert WJ Histologic changes after vertebroplasty. J Bone Joint Surg [Am] 86(A):1230-1238, 2004.
    Ying. Nanocrystalline apatites and composite prostheses incorporating them, and method for their production ,US patent 6013591, 2000.

    http://en.wikipedia.org/wiki/List_of_bones_of_the_human_skeleton
    http://darkwing.uoregon.edu/~louiso/BNSTRUC.GIF

    張炳龍, ROSS 組織學, 合記圖書出版社, 147-158, 1991
    梁智仁,“骨質疏鬆致骨折專治生物材料的研製與市場化.”京港學術交流第五十四期, 2002
    汪建民, 材料分析, 中國材料科學學會, 1998

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE