簡易檢索 / 詳目顯示

研究生: 潘怡婷
Poon, Yi-Ting
論文名稱: 探討STEAM PBL課程對學生創造思考之影響:以線上行為觀測系統為工具
Investigating the Effectiveness of STEAM PBL on Students' Creative Thinking: Implementing an Online Behavioral Observation System
指導教授: 楊雅婷
Yang, Ya-Ting
學位類別: 碩士
Master
系所名稱: 社會科學院 - 教育研究所
Institute of Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 190
中文關鍵詞: STEAM專題導向學習創造思考線上行為觀測系統
外文關鍵詞: STEAM, project-based learning, creative thinking, behavioral observation system
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年許多國際組織將創造思考視為促進個人成長和終身學習的核心技能。同時,跨域課程(如STEAM)是未來教育的趨勢,過去有關跨域課程結合專題導向學習(project-based learning, PBL)對創造思考之影響的研究,缺乏探討學習過程中學生創造思考行為之變化。目前仍缺乏觀測跨域課程之創造思考行為理論,故本研究開發Classroom Observation Protocol for Creative Behaviors (COPCB)理論,並結合線上行為觀測系統記錄學生在STEAM PBL課室中的創造思考行為。此外,本研究同時探討STEAM PBL課程對學生創造思考行為、態度與技能三面向之有效性。為驗證COPCB具有效度,本研究邀請12位專家(包含以跨領域課程為研究專長之大學教授、以高層次思考為研究專長之大學教授、有執行跨域課程經驗之中小學老師、有高層次思考研究經驗之中小學老師)以德懷術驗證COPCB的專家效度,再運用威廉斯創造力測驗之「創造性思考活動」和「創造性傾向量表」驗證COPCB之效標關聯效度。此外,為驗證STEAM PBL對學生創造思考之有效性,本研究進行為期14週的前後測準實驗,課程以聯合國永續發展目標的第2個目標「終結飢餓」和第12個目標「負責任的生產消費循環」,設計問題「該如何減少人力澆灌養液與水分,並保持良好的溫室環境以栽種蕃茄呢?」。研究對象為臺中某國中50位八年級學生。自變項為STEAM PBL課程教學策略;依變項為學生的創造思考行為、態度與技能。研究工具為COPCB結合行為觀測系統、威廉斯創造力測驗之「創造性傾向量表」與「創造性思考活動」。資料分析方法採用相關分析和相依樣本t檢定。研究結果顯示:
    一、 以德懷術開發的COPCB具有良好效度。
    (一) 以德懷術開發的COPCB具有專家效度。
    (二) 以威廉斯創造力測驗之「創造性傾向量表」和「創造性思考活動」作為效標,相關分析結果為創造思考行為與創造思考態度、創造思考技能皆達顯著正向相關,顯示以德懷術開發的COPCB具有效標關聯效度。
    二、 STEAM PBL課程能夠提升學生創造思考。
    (一) STEAM PBL課程能夠提升學生創造思考行為。
    (二) STEAM PBL課程能夠提升學生創造思考態度。
    (三) STEAM PBL課程能夠提升學生創造思考技能。
    最後,根據本研究結果提供以下未來建議。第一,將COPCB作為形成性評估策略並融入STEAM PBL課程,以COPCB結合課程有助於教師滾動修正教學內容。第二,本研究所蒐集的創造思考行為僅來自兩種課室情境,分別是講述情境(學生被動接受知識)和實作情境(學生使用先前討論出的解決方案製作模型),建議未來可蒐集更多課室情境資料(如:發想和討論)了解學生創造思考行為於各情境之發生比例,並探討相同情境下創造思考行為之縱貫變化趨勢,作為教學的精進依據。第三,在STEAM PBL課程設計中加入社區連結元素,深化主動挑戰真實問題的內在動機,以提升學生創造思考態度之挑戰性面向。第四,可將威廉斯知情互動教學模式理論之教學策略融入STEAM PBL課程,探究其是否能更提升學生之創造思考。第五,安排觀課者參加培訓課程並進行評分者間信度分析,以驗證COPCB之信度。

    The purpose of this study was to develop the theory of Classroom Observation Protocol for Creative Behaviors (COPCB) and integrate it with an online behavioral observation system to record students' creative behaviors in STEAM PBL classrooms. In addition, in order to fully understand the development of students’ creative thinking, this study explores the effectiveness of STEAM PBL courses on students' creative behaviors, creative attitudes, and creative thinking skills.
    In order to verify the validity of COPCB, this study invited 12 experts to verify the expert validity of COPCB by Delphi technique. Furthermore, the criterion-related validity of COPCB was verified by using the test of divergent thinking and test of divergent feeling in Creativity Assessment Packet (CAP). Moreover, to verify the effectiveness of STEAM PBL on students' creative thinking, this study implements a pretest and posttest quasi-experimental design for 14 weeks. The participants were 50 eighth-grade students from a secondary school in Taichung. The independent variable was STEAM PBL courses. The dependent variable were students' creative behaviors, creative attitudes and creative thinking skills. According to the purpose of the research, the research tools are the GORP system, test of divergent thinking and test of divergent feeling in Creativity Assessment Packet (CAP). Data analysis involved correlation analysis and paired sample t-test. The results from data analysis are as below:
    1. COPCB developed by Delphi technique has good validity.
    1-1 COPCB developed by Delphi technique has good expert validity.
    1-2 COPCB was significantly related to test of divergent thinking and test of divergent feeling in Creativity Assessment Packet (CAP).
    2. STEAM PBL courses improved students' creative thinking.
    2-1 STEAM PBL courses improved students' creative behaviors.
    2-2 STEAM PBL courses improved students' creative attitudes.
    2-3 STEAM PBL courses improved students' creative thinking skills.

    目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的與待答問題 9 第三節 名詞釋義 10 第二章 文獻探討 13 第一節 STEAM PBL課程之探究 13 第二節 創造思考之探究 18 第三節 線上行為觀測系統 25 第三章 研究方法 27 第一節 以德懷術開發COPCB理論和介面 27 第二節 實驗設計 32 第三節 研究工具 40 第四節 資料分析 42 第四章 研究結果 43 第一節 以德懷術開發的COPCB之效度 43 第二節 STEAM PBL課程對學生創造思考之影響 54 第五章 討論、結論與建議 57 第一節 討論 57 第二節 結論 65 第三節 研究限制與未來建議 66 參考文獻 69 壹、中文文獻 69 貳、英文文獻 71 附錄一 「威廉斯創造力測驗(CAP)」使用同意書 90 附錄二 德懷術第一回合問卷 91 附錄三 德懷術第二回合問卷 110 附錄四 德懷術第三回合問卷 143 附錄五 COPCB最終版行為指標(長版本) 174

    于承平(2018)。探討芬蘭國家基本教育核心課程變革。師資培育與教師專業發展期刊,11,1-25。https://doi.org/10.3966/207136492018081102001
    江俊儀(2021)。淺談國中跨域課程之發展。臺灣教育評論月刊,10(3),153-158。
    吳靜吉(1998)。心理與人生。遠流出版公司。
    李懿芳(2019)。芬蘭現象本位教學課程改革之理念與實踐。教育政策論壇,22,1-26。https://doi.org/10.3966/156082982019052202001
    林幸台(1995)。威廉斯創造力測驗修訂報告。特殊教育研究學刊, 11 。
    林幸台、王木榮修訂(1994)。威廉斯創造力測驗指導手冊。心理出版社。
    桑顯舜、林淑梤(2019)。運用德懷術建立國小教師基本科學能力之評量要項。師資培育與教師專業發展期刊,12(1),29-58。
    張世彗(2007)。創造力:理論、技法與教學。五南圖書出版股份有限公司。
    張嘉育、林肇基 (2019)。推動高等教育跨領域學習:趨勢、迷思、途徑與挑戰。課程與教學,22(2),31-48。
    教育部(2014)。十二年國民基本教育課程綱要總綱。https://www.naer.edu.tw/upload/1/16/doc/288/(111%E5%AD%B8%E5%B9%B4%E5%BA%A6%E5%AF%A6%E6%96%BD)%E5%8D%81%E4%BA%8C%E5%B9%B4%E5%9C%8B%E6%95%99%E8%AA%B2%E7%A8%8B%E7%B6%B1%E8%A6%81%E7%B8%BD%E7%B6%B1.pdf
    郭重吉(2008)。介紹跨領域的研究與教育。研究與創新,7,5-6。https://doi.org/10.29603/ZHWHGX.200805.0002
    陳龍安(2008)。創造思考教學的理論與實際(簡明版)。心理出版社。
    游家政(1996)。德懷術及其在課程研究上的應用。花蓮師院學報,6,1-24。
    湯維玲(2019)。探究美國 STEM 與 STEAM 教育的發展。課程與教學,22(2),49-77。https://doi:10.6384/CIQ.201904_22(2).0003
    湯維玲(2022)。我國小學跨學科/領域STEAM課程的「資訊科技」與「藝術」案例分析。台灣教育研究期刊,3(3),47-69。
    黃琡惠(2013)。歷史課程設計: 多科、科際及超學科統整課程。國教新知,60(2),66-71。 https://doi.org/10.6701/TEEJ.201306_60(2).0009
    楊雅婷、林秋斌、林奇賢、林珊如(2022)。教育部中小學數位學習深耕推動計畫2022年期末報告書。教育部委託之專題研究成果報告。
    劉協成(2006)。德懷術之理論與實務初探。教師之友,47(4),91-99。
    蕭佳純(2019)。國內運用創造力教學模式對學生創造力影響之後設分析。特殊教育研究學刊,44(3),93 -120。
    Acar, S., Runco, M. A., & Park, H. (2020). What should people be told when they take a divergent thinking test? A meta-analytic review of explicit instructions for divergent thinking. Psychology of Aesthetics, Creativity, and the Arts, 14(1), 39–49. https://doi.org/10.1037/aca0000256
    Adriyawati, A., Utomo, E., Rahmawati, Y., & Mardiah, A. (2020). STEAM-Project-Based learning integration to improve elementary school students’ scientific literacy on alternative energy learning. Universal Journal of Educational Research, 8(5), 1863-1873. https://doi.org/10.13189/ujer.2020.080523
    Aguilera, D., & Ortiz-Revilla, J. (2021). STEM vs. STEAM Education and Student Creativity: A Systematic Literature Review. Education Sciences, 11(7). https://doi.org/10.3390/educsci11070331
    Akben, C., & Coskun, H. (2019). Reintroduction of odor combined with cognitive stimulation supports creative ideation via memory retrieval mechanisms. Creativity Research Journal, 31(3), 309-319. https://doi.org/10.1080/10400419.2019.1641686
    Al-Abdali, N. S., & Al-Balushi, S. M. (2016). Teaching for creativity by science teachers in grades 5–10. International Journal of Science and Mathematics Education, 14(2), 251-268. https://doi.org/10.1007/s10763-014-9612-3
    American Association for the Advancement of Science, AAAS (2013). Describing and measuring undergardaute STEM teaching practices. http://www.nsf-i3.org/resources/view/describing_and_measuring_teaching_practices/
    Anwar, S., & Menekse, M. (2021). A systematic review of observation protocols used in postsecondary STEM classrooms. Review of Education, 9(1), 81-120. https://doi.org/10.1002/rev3.3235
    Areljung, S., & Günther-Hanssen, A. (2022). STEAM education: An opportunity to transcend gender and disciplinary norms in early childhood?. Contemporary Issues in Early Childhood, 23(4), 500-503. https://doi.org/10.1177/14639491211051434
    Beghetto, R. A. (2019). Creativity in classrooms. In J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge handbook of creativity (pp. 587–606). Cambridge University Press. https://doi.org/10.1017/9781316979839.029
    Belsky, S. (2020). Creativity will be key to competing against AI in the future workforce—here’s how. World Economic Forum. https://www.weforum.org/agenda/2020/11/ai-automation-creativity-workforce-skill-fute-of-work/
    Berk, R. A. (2005). Survey of 12 strategies to measure teaching effectiveness. International journal of teaching and learning in higher education, 17(1), 48-62.
    Bhat, B. A., & Bhat, G. J. (2019). Formative and summative evaluation techniques for improvement of learning process. European Journal of Business & Social Sciences, 7(5), 776-785.
    Bohm, D. (2004). On creativity. Routledge.
    Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Sciences, 9(7), 322–328. https://doi.org/ 10.1016/j.tics.2005.05.012
    Brassler, M., & Dettmers, J. (2017). How to Enhance Interdisciplinary Competence-Interdisciplinary Problem-Based Learning versus Interdisciplinary Project-Based Learning. Interdisciplinary Journal of Problem-Based Learning, 11(2), Article 12. https://doi.org/10.7771/1541-5015.1686
    Brassler, M., & Sprenger, S. (2021). Fostering Sustainability Knowledge, Attitudes, and Behaviours through a Tutor-Supported Interdisciplinary Course in Education for Sustainable Development. Sustainability, 13(6), 3494. https://doi.org/10.3390/su13063494
    Calvo, I., Cabanes, I., Quesada, J., & Barambones, O. (2018). A Multidisciplinary PBL Approach for Teaching Industrial Informatics and Robotics in Engineering. Ieee Transactions on Education, 61(1), 21-28. https://doi.org/10.1109/te.2017.2721907
    Chalmers, C., Carter, M., Cooper, T., & Nason, R. (2017). Implementing “big ideas” to advance the teaching and learning of science, technology, engineering, and mathematics (STEM). International Journal of Science and Mathematics Education, 15(1), 25–43. https://doi.org/10.1007/s10763-017-9799-1
    Chien, Y. C., Liu, M. C., & Wu, T. T. (2020). Discussion-record-based prediction model for creativity education using clustering methods. Thinking Skills and Creativity, 36, 100650. https://doi.org/10.1016/j.tsc.2020.100650
    Chien, Y. H., & Chu, P. Y. (2018). The diferent learning outcomes of high school and college students on a 3D-Printing STEAM engineering design curriculum. International Journal of Science and Mathematics Education, 16(6), 1047–1064. https://doi. org/10.1007/s10763-017-9832-4
    Chongde, L., & Tsingan, L. (2003). Multiple intelligence and the structure of thinking. Theory & Psychology, 13(6), 829–845. https://doi.org/10.1177/0959354303136004
    Chu, H. E., Martin, S. N., & Park, J. (2019). A theoretical framework for developing an intercultural STEAM program for Australian and Korean students to enhance science teaching and learning. International Journal of Science and Mathematics Education, 17, 1251–1266. https://doi.org/10.1007/s10763-018-9922-y
    Chung, C. C., Cheng, B. Y., Cheng, Y. M., & Lou, S. J. (2022). Development of Interactive Textbooks by Applying STEAM and Virtual Reality Concepts. International Journal of Engineering Education, 38(1), 158-170.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
    Colucci-Gray, L., Burnard, P., Gray, D., & Cooke, C. (2019). A critical review of STEAM (science, technology, engineering, arts, and mathematics). Oxford University Press.
    Conradty, C., & Bogner, F. X. (2018). From STEM to STEAM: How to monitor creativity. Creativity Research Journal, 30(3), 233-240. https://doi.org/10.1080/10400419.2018.1488195
    Cropley, D. H. (2016). Creativity in Engineering. In G. E. Corazza & S. Agnoli (Eds.), Multidisciplinary Contributions to the Science of Creative Thinking (pp. 155-173). Springer Singapore. https://doi.org/10.1007/978-981-287-618-8_10
    Davis, G. A. (1986). Creativity is forever. Kendall.
    Desimone, L., Smith, T. M., & Phillips, K. (2013). Linking student achievement growth to professional development participation and changes in instruction: A longitudinal study of elementary students and teachers in Title I schools. Teachers College Record, 115(5), 1–46. https://doi.org/10.1177/016146811311500508
    Diego-Mantecon, J. M., Prodromou, T., Lavicza, Z., Blanco, T. F., & Ortiz-Laso, Z. (2021). An attempt to evaluate STEAM project-based instruction from a school mathematics perspective. Zdm-Mathematics Education, 53(5), 1137-1148. https://doi.org/10.1007/s11858-021-01303-9
    Dijkstra, A., Buist, G., & Dassen, T. (1998). A criterion-related validity study of the Nursing-Care Dependency (NCD) scale. International Journal of Nursing Studies, 35(3), 163-170. https://doi.org/10.1016/S0020-7489(98)00025-X
    Dilekçi, A., & Karatay, H. (2023). The effects of the 21st century skills curriculum on the development of students’ creative thinking skills. Thinking Skills and Creativity, 47, 101229. https://doi.org/10.1016/j.tsc.2022.101229
    Dollinger, S. J., Urban, K. K., & James, T. A. (2004). Creativity and openness: Further validation of two creative product measures. Creativity Research Journal, 16(1), 35-47. https://doi.org/10.1207/s15326934crj1601_4
    Domenici, V. (2022). STEAM Project-Based Learning Activities at the Science Museum as an Effective Training for Future Chemistry Teachers. Education Sciences, 12(1), 30. https://doi.org/10.3390/educsci12010030
    Drake, S. M., & Savage, M. J. (2016). Negotiating accountability and integrated curriculum from a global perspective. International Journal of Learning, Teaching and Educational Research, 15(6), 127-144.
    ElSayary, A. (2021). Teaching and Assessing Creativity in STEAM Education. Proceedings of The 12th International Conference on Society and Information Technologies (ICSIT 2021)
    Fanchini, A., Jongbloed, J., & Dirani, A. (2019). Examining the well-being and creativity of schoolchildren in France. Cambridge Journal of Education, 49(4), 391–416. https://doi.org/10.1080/0305764X.2018.1536197
    Frost, L., Goodson, L., Greene, J., Huffman, T., Kunberger, T., & Johnson, B. (2018). SPARCT: A STEM professional academy to reinvigorate the culture of teaching. Journal of STEM Education, 19(1). https://www.learntechlib.org/p/182949/
    Gajda, A., Beghetto, R. A., & Karwowski, M. (2017a). Exploring creative learning in the classroom: A multi-method approach. Thinking Skills and Creativity, 24, 250-267. https://doi.org/10.1016/j.tsc.2017.04.002
    Gajda, A., Karwowski, M., & Beghetto, R. A. (2017b). Creativity and academic achievement: A meta-analysis. Journal of Educational Psychology, 109(2), 269. https://doi. org/10.1037/edu0000133
    Gardner, M., & Tillotson, J. W. (2019). Interpreting integrated STEM: Sustaining pedagogicalal innovation within a public middle school context. International Journal of Science and Mathematics Education, 17(7), 1283–1300. https://doi.org/10.1007/s10763-018-9927-6
    Geitz, G., Brinke, D.J.-T., & Kirschner, P. A. (2016). Changing learning behaviour: Self-efcacy and goal orientation in PBL groups in higher education. International Journal of Educational Research, 75, 146–158. https://doi.org/10.1016/j.ijer.2015.11.001
    Generalized Observation and Reflection Platform, University of California-Davis, (2018). Available at: https://cee.ucdavis.edu/GORP.
    Gentili, P. L. (2019). Designing and teaching a novel interdisciplinary course on complex systems to prepare new generations to address 21st-century challenges. Journal of Chemical Education, 96(12), 2704-2709. https://doi.org/10.1021/acs.jchemed.9b00027
    Gillam, T. (2018). Understanding Creativity. In Creativity, Wellbeing and Mental Health Practice (pp. 15-30). Palgrave Pivot, Cham.
    Gl ̆aveanu, V. P., Hanson, M. H., Baer, J., Barbot, B., Clapp, E. P., Corazza, G. E., Hennessey, B., Kaufman, J. C., Lebuda, I., Lubart, T., Montuori, A., Ness, I. J., Plucker, J., Reiter-Palmon, R., Sierra, Z., Simonton, D. K., Neves-Pereira, M. S., & Sternberg, R. J. (2020). Advancing creativity theory and research: A socio-cultural manifesto. The Journal of Creative Behavior, 54(3), 741–745. https://doi.org/10.1002/jocb.395
    Göçmen, Ö., & Coşkun, H. (2019). The effects of the six thinking hats and speed on creativity in brainstorming. Thinking Skills and creativity, 31, 284-295. https://doi.org/10.1016/j.tsc.2019.02.006
    Gove, P. B. (Ed.) (1973). Webster’s third new international dictionary. Springfield, MA: Merriam-Webster Inc.
    Guaman-Quintanilla, S., Everaert, P., Chiluiza, K., & Valcke, M. (2023). Impact of design thinking in higher education: a multi-actor perspective on problem solving and creativity. International Journal of Technology and Design Education, 33(1), 217-240. https://doi.org/10.1007/s10798-021-09724-z
    Guilford, J. P. (1967). The nature of human intelligence. McGraw-Hill.
    Guilford, J. P. (1968). Intelligence, creativity, and their educational implications. Edits Pub.
    Hansenne, M., & Legrand, J. (2012). Creativity, emotional intelligence, and school performance in children. International Journal of Educational Research, 53, 264–268. https://doi.org/10.1016/j.ijer.2012.03.015
    Hennessey, B. A., & Amabile, T. M. (2010). Creativity. Annual Review of Psychology, 61(1), 569–598. https://doi.org/10.1146/annurev.psych.093008.100416
    Hernández-Torrano, D., & Ibrayeva, L. (2020). Creativity and education: A bibliometric mapping of the research literature (1975–2019). Thinking skills and Creativity, 35, 100625. https://doi.org/10.1016/j.tsc.2019.100625
    Herro, D., & Quigley, C. (2017). Exploring teachers’ perceptions of STEAM teaching through professional development: implications for teacher educators. Professional Development in Education, 43(3), 416–438. https://doi.org/10.1080/19415257.2016.1205507
    Hocevar, D. (1981). Measurement of creativity: Review and critique. Journal of Personality Assessment, 45(5), 450–464. https://doi.org/10.1207/s15327752jpa4505_1
    Hocevar, D., & Bachelor, P. (1989). A Taxonomy and Critique of Measurements Used in the Study of Creativity. In J. A. Glover, R. R. Ronning, & C. R. Reynolds (Eds.), Handbook of Creativity (pp. 53-75). Springer US. https://doi.org/10.1007/978-1-4757-5356-1_3
    Hora, M. T. (2015). Toward a descriptive science of teaching: How the TDOP illuminates the multidimensional nature of active learning in postsecondary classrooms. Science Education, 99(5), 783-818. https://doi.org/10.1002/sce.21175
    Hora, M. T., & Ferrare, J. J. (2013). Instructional systems of practice: A multidimensional analysis of math and science undergraduate course planning and classroom teaching. Journal of the Learning Sciences, 22(2), 212-257. https://doi.org/10.1080/10508406.2012.729767
    Hora, M. T., Oleson, A., & Ferrare, J. J. (2013). Teaching Dimensions Observation Protocol (TDOP) User’s Manual. University of Wisconsin-Madison. http://tdop.wceruw.org/Document/TDOP-Users-Guide.pdf
    Hsiao, H. S., Chen, J. C., Chen, J. H., Zeng, Y. T., & Chung, G. H. (2022a). An Assessment of Junior High School Students’ Knowledge, Creativity, and Hands-On Performance Using PBL via Cognitive–Affective Interaction Model to Achieve STEAM. Sustainability, 14(9), 5582. https://doi.org/10.3390/su14095582
    Hsiao, J. C., Chen, S. K., Chen, W., & Lin, S. S. J. (2022b). Developing a plugged-in class observation protocol in high-school blended STEM classes: Student engagement, teacher behaviors and student-teacher interaction patterns. Computers & Education, 178, Article 104403. https://doi.org/10.1016/j.compedu.2021.104403
    Israel-Fishelson, R., & Hershkovitz, A. (2022). Studying interrelations of computational thinking and creativity: A scoping review (2011–2020). Computers & Education, 176, 104353. https://doi.org/10.1016/j.compedu.2021.104353
    Jacobs, H. H., Association for, S., & Curriculum Development, A. V. A. (1989). Interdisciplinary Curriculum: Design and Implementation (978-0-87120-165-2). https://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=ED316506&site=ehost-live
    Jamil, F. M., Linder, S. M., & Stegelin, D. A. (2018). Early childhood teacher beliefs about STEAM education after a professional development conference. Early childhood education journal, 46(4), 409-417. https://doi.org/10.1007/s10643-017-0875-5
    Jia, Y., Zhou, B., & Zheng, X. (2021). A Curriculum Integrating STEAM and Maker Education Promotes Pupils' Learning Motivation, Self-Efficacy, and Interdisciplinary Knowledge Acquisition. Frontiers in psychology, 3652. https://doi.org/10.3389/fpsyg.2021.725525
    Kanematsu, H., & Barry, D. M. (2016). STEM and Creativity. Stem and Ict Education in Intelligent Environments, 91, 15-23. https://doi.org/10.1007/978-3-319-19234-5_3
    Kariippanon, K. E., Cliff, D. P., Lancaster, S. J., Okely, A. D., & Parrish, A. M. (2019). Flexible learning spaces facilitate interaction, collaboration and behavioural engagement in secondary school. PloS one, 14(10), e0223607. https://doi.org/10.1371/journal.pone.0223607
    Katz-Buonincontro, J., & Anderson, R. C. (2018). How do we get from good to great? The need for better observation studies of creativity in education. Frontiers in psychology, 9, 2342. https://doi.org/10.3389/fpsyg.2018.02342
    Katz‐Buonincontro, J., & Anderson, R. C. (2020). A review of articles using observation methods to study creativity in education (1980–2018). The Journal of Creative Behavior, 54(3), 508-524. https://doi.org/10.1002/jocb.385
    Kezar, A., & Maxey, D. (2016). The Delphi technique: An untapped approach of participatory research. International journal of social research methodology, 19(2), 143-160. https://doi.org/10.1080/13645579.2014.936737
    Kim, S. S. (2020). Exploitation of shared knowledge and creative behavior: the role of social context. Journal of Knowledge Management, 24(2), 279-300. https://doi.org/10.1108/JKM-10-2018-0611
    Kirschbaum, M., Barnett, T., & Cross, M. (2019). Q sample construction: a novel approach incorporating a Delphi technique to explore opinions about codeine dependence. BMC Medical Research Methodology, 19, 1-12. https://doi.org/10.1186/s12874-019-0741-9
    Konstantinidou, E. P., & Zisi, V. Z. (2017). Do physical educators promote students’ creativity? an observational analysis study. The Physical Educator, 74(3). https://doi.org/10.18666/TPE-2017-V74-I3-7407
    Kranzfelder, P., Bankers-Fulbright, J. L., García-Ojeda, M. E., Melloy, M., Mohammed, S., & Warfa, A. R. M. (2019). The Classroom Discourse Observation Protocol (CDOP): A quantitative method for characterizing teacher discourse moves in undergraduate STEM learning environments. PloS one, 14(7), e0219019. https://doi.org/10.1371/journal.pone.0219019
    Krathwohl, D. R. (2002). A revision of bloom’s taxonomy: An overview. Theory into Practice, 41(4), 212–218. https://doi.org/10.1207/s15430421tip4104_2
    Kuo, H. C., Yang, Y. T. C., Chen, J. S., Hou, T. W., & Ho, M. T. (2022). The Impact of Design Thinking PBL Robot Course on College Students' Learning Motivation and Creative Thinking. Ieee Transactions on Education. https://doi.org/10.1109/te.2021.3098295
    Kuypers, K. P. C., Riba, J., De La Fuente Revenga, M., Barker, S., Theunissen, E. L., & Ramaekers, J. G. (2016). Ayahuasca enhances creative divergent thinking while decreasing conventional convergent thinking. Psychopharmacology, 233, 3395-3403. https://doi.org/10.1007/s00213-016-4377-8
    Lin, C. L., & Tsai, C. Y. (2021). The effect of a pedagogical STEAM model on students’ project competence and learning motivation. Journal of Science Education and Technology, 30(1), 112-124. https://doi.org/10.1007/s10956-020-09885-x
    Lu, S. Y., Lo, C. C., & Syu, J. Y. (2021). Project-based learning oriented STEAM: the case of micro-bit paper-cutting lamp. International Journal of Technology and Design Education, 1-23. https://doi.org/10.1007/s10798-021-09714-1
    Lu, S. Y., Wu, C. L., & Huang, Y. M. (2022). Evaluation of Disabled STEAM -Students' Education Learning Outcomes and Creativity under the UN Sustainable Development Goal: Project-Based Learning Oriented STEAM Curriculum with Micro:bit. Sustainability, 14(2), Article 679. https://doi.org/10.3390/su14020679
    Lune, H., & Berg, B. L. (2017). Qualitative research methods for the social sciences. Pearson.
    Maeda, J. (2013). STEM + Art= STEAM. The STEAM Journal, 1(1), 34. https://doi.org/10.5642/steam.201301.34
    Markham, T., Larmer, J., & Ravitz, J. L. (2003). Project based learning handbook: A guide to standards-focused project based learning for middle and high school teachers. Buck Institute for Education.
    Meng, X., Yang, L., Sun, H., Du, X., Yang, B., & Guo, H. (2019). Using a Novel Student-centered Teaching Method to Improve Pharmacy Student Learning. American journal of pharmaceutical education, 83(2), 6505. https://doi.org/10.5688/ajpe6505
    Mohd Hawari, A., & Mohd Noor, A. (2020). Project Based Learning Pedagogical Design in STEAM Art Education. Asian Journal Of University Education, 16(3), 102-111. https://doi.org/10.24191/ajue.v16i3.11072
    Murry, J. W., & Harnmons, Jr. J. O. (1995). Delphi: a versatile methodology for conducting qualitative research. The Review of Higher Education, 18(4), 423-436. https://doi.org/10.1353/rhe.1995.0008
    National Research Council. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering. National Academies Press.
    Nemiro, J., Larriva, C., & Jawaharlal, M. (2017). Developing creative behavior in elementary school students with robotics. The Journal of Creative Behavior, 51(1), 70-90. https://doi.org/10.1002/jocb.87
    Nie, Y., & Lau, S. (2010). Differential relations of constructivist and didactic instruction to students' cognition, motivation, and achievement. Learning and Instruction, 20(5), 411-423. https://doi.org/10.1016/j.learninstruc.2009.04.002
    Nilsen, T., & Gustafsson, J. E. (2016). Teacher quality, instructional quality and student outcomes: relationships across countries, cohorts and time. Springer International Publishing.
    Nizamov, I. D., Nasibullov, R. R., Oleynikova, O. N., & Gorylev, A. I. (2021). Some characteristics of the systematization of Joint International Programmes in Higher Education. Revista on line de Política e Gestão Educacional, 25(1), 567-576. https://doi.org/10.22633/rpge.v25iesp.1.14997
    Nworie, J. (2011). Using the Delphi technique in educational technology research. TechTrends, 55(5), 24. https://doi.org/10.1007/s11528-011-0524-6
    OECD. (2017). PISA 2021 Creative Thinking Strategic Advisory Group Report. https://one.oecd.org/document/EDU/PISA/GB(2017)19/en/pdf
    OECD. (2018). Future of Education and Skills 2030: Conceptual Learning Framework Education. https://static1.squarespace.com/static/5e26d2d6fcf7d67bbd37a92e/t/5e411f365af4111d703b7f91/1581326153625/Education-and-AI.pdf
    OECD. (2021). PISA 2022 creative thinking framework (third draft). https://www.oecd.org/pisa/publications/PISA-2021-creative-thinking-framework.pdf
    Orakci, Ş. (2023). Structural relationship among academic motivation, academic self‐efficacy, problem solving skills, creative thinking skills, and critical thinking skills. Psychology in the Schools, 60(7), 2173-2194. https://doi.org/10.1002/pits.22851
    Ozkan, G., & Topsakal, U. U. (2021). Exploring the effectiveness of STEAM design processes on middle school students' creativity. International Journal of Technology and Design Education, 31(1), 95-116. https://doi.org/10.1007/s10798-019-09547-z
    Partnership for 21st Century Learning. (2019). Framework for 21st-century learning. https://static.battelleforkids.org/documents/p21/P21_Framework_Brief.pdf.
    Paz-Pascual, C., Artieta-Pinedo, I., & Grandes, G. (2019). Consensus on priorities in maternal education: results of Delphi and nominal group technique approaches. BMC pregnancy and childbirth, 19, 1-13. https://doi.org/10.1186/s12884-019-2382-8
    Peng, S. L., Cherng, B. L., & Chen, H. C. (2013). The effects of classroom goal structures on the creativity of junior high school students. Educational Psychology, 33(5), 540-560. https://doi.org/10.1080/01443410.2013.812616
    Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31, 31-43. https://doi.org/10.1016/j.tsc.2018.10.002
    Pianta, R. C., & Hamre, B. K. (2009). Conceptualization, measurement, and improvement of classroom processes: Standardized observation can leverage capacity. Educational researcher, 38(2), 109-119. https://doi.org/10.3102/0013189X09332374
    Priyanto, D., & Dharin, A. (2021). Students' creativity development model and its implementation in Indonesian Islamic Elementary Schools. Pegem Journal of Education and Instruction, 11(3), 81-87. https://doi.org/10.14527/pegegog.2021.00
    Rahimi, S., & Shute, V. J. (2021). First inspire, then instruct to improve students’ creativity. Computers & Education, 174, 104312. https://doi.org/10.1016/j.compedu.2021.104312
    Rais, M. (2010). Model project based-learning sebagai upaya meningkatkan prestasi akademik mahasiswa. Jurnal Pendidikan dan Pengajaran, 43(3). https://doi.org/10.23887/jppundiksha.v43i3.129
    Reiter-Palmon, R., Forthmann, B., & Barbot, B. (2019). Scoring divergent thinking tests: A review and systematic framework. Psychology of Aesthetics, Creativity, and the Arts, 13(2), 144–152. https://doi.org/10.1037/aca0000227
    Rhodes, M. (1961). An analysis of creativity. Phi Delta Kappan, 42(7), 305-310. http://www.jstor.org/stable/20342603
    Richardson, C., & Mishra, P. (2018). Learning environments that support student creativity: Developing the SCALE. Thinking skills and creativity, 27, 45-54. https://doi.org/10.1016/j.tsc.2017.11.004
    Ridwan, A., Rahmawati, Y., & Hadinugrahaningsih, T. (2017). STEAM integration in chemistry learning for developing 21st century skills. MIER Journal of Educational Studies Trends and Practices, 7(2), 184-194. https://doi.org/10.52634/mier/2017/v7/i2/1420
    Rogers, K. C., Petrulis, R., Yee, S. P., & Deshler, J. (2020). Mathematics Graduate Student Instructor Observation Protocol (GSIOP): Development and Validation Study. International Journal of Research in Undergraduate Mathematics Education, 6(2), 186-212. https://doi.org/10.1007/s40753-019-00106-4
    Ross, S. M., Smith, L. J., Alberg, M., & Lowther, D. (2004). Using classroom observations as a research and formative evaluation tool in educational reform: The school observation measure. New directions for observational research in culturally and linguistically diverse classrooms, 144-173. https://doi.org/10.1017/CBO9780511616419.007
    Rouse, W. B. (1986). A note on the nature of creativity in engineering: Implications for supporting system design. Information Processing & Management, 22(4), 279-285. https://doi.org/10.1016/0306-4573(86)90026-9
    Runco, M. A. (2004). Creativity. Annual Review of Psychology, 55(1), 657-687. https://doi.org/10.1146/annurev.psych.55.090902.141502
    Runco, M. A. (2014). Creativity. Theories and themes: Research, development, and practice (2nd ed.). Waltham, MA: Elsevier.
    Rush, D. L. (2016). Integrated STEM Education through Project-Based Learning. Solution Manager at Learning Journal, 1-10.
    Said-Metwaly, S., Van den Noortgate, W., & Barbot, B. (2021). Torrance test of creative thinking-verbal, Arabic version: Measurement invariance and latent mean differences across gender, year of study, and academic major. Thinking Skills and Creativity, 39, 100768. https://doi.org/10.1016/j.tsc.2020.100768
    Said-Metwaly, S., Van den Noortgate, W., & Kyndt, E. (2017). Methodological issues in measuring creativity: A systematic literature review. Creativity. Theories–Research-Applications, 4(2), 276-301. https://doi.org/10.1515/ctra-2017-0014
    Sánchez-López, I., Pérez-Rodríguez, A., & Fandos-Igado, M. (2019). Com-educational platforms: Creativity and community for learning. Journal of New Approaches in Educational Research, 8(2), 214-226. https://doi.org/10.7821/naer.2019.7.437
    Sawyer, R. K. (2012). Explaining creativity: The science of human innovation (2nd ed.). Oxford University Press.
    Shadiev, R., & Wang, X. (2022). A Review of Research on Technology-Supported Language Learning and 21st Century Skills. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.897689
    Simonton, D. K. (1988). Scientific genius: A psychology of science. Cambridge University Press.
    Stember, M. (1991). Advancing the social sciences through the interdisciplinary enterprise. Social Science Journal, 28(1), 1-14. https://doi.org/10.1016/0362-3319(91)90040-b
    Stokols, D., Hall, K. L., Taylor, B. K., & Moser, R. P. (2008). The science of team science: overview of the field and introduction to the supplement. American journal of preventive medicine, 35(2), S77-S89. https://doi.org/10.1016/j.amepre.2008.05.002
    Sun, M., Wang, M., Wegerif, R., & Peng, J. (2022). How do students generate ideas together in scientific creativity tasks through computer-based mind mapping?. Computers & Education, 176, 104359. https://doi.org/10.1016/j.compedu.2021.104359
    Tamim, S. R., & Grant, M. M. (2013). Definitions and Uses: Case Study of Teachers Implementing Project-based Learning. Interdisciplinary Journal of Problem-Based Learning, 7(2). https://doi.org/https://doi.org/10.7771/1541-5015.1323
    Thomas, J. W. (2000). A review of research on project-based learning. Autodesk Foundation.
    Thornhill-Miller, B., Camarda, A., Mercier, M., Burkhardt, J. M., Morisseau, T., Bourgeois-Bougrine, S., Vinchon F., El Hayek S., Augereau-Landais M., Mourey F., Feybesse C., Sundquist D., & Lubart, T. (2023). Creativity, Critical Thinking, Communication, and Collaboration: Assessment, Certification, and Promotion of 21st Century Skills for the Future of Work and Education. Journal of Intelligence, 11(3), 54. https://doi.org/10.3390/jintelligence11030054
    Torrance, E. P. (1974). Torrance tests of creative thinking. Scholastic Testing Service.
    Torrance, E. P. (1984). Pupil experience. Croon Helm.
    Ubben, G. (2019). Using project-based learning to teach STEAM. In Converting STEM into STEAM programs (pp. 67-83). Springer, Cham.
    Valovicova, L., Ondruska, J., Zelenicky, L., Chytry, V., & Medova, J. (2020). Enhancing Computational Thinking through Interdisciplinary STEAM Activities Using Tablets. Mathematics, 8(12), Article 2128. https://doi.org/10.3390/math8122128
    Velasco, J. B., Knedeisen, A., Xue, D., Vickrey, T. L., Abebe, M., & Stains, M. (2016). Characterizing instructional practices in the laboratory: The laboratory observation protocol for undergraduate STEM. Journal of Chemical Education, 93(7), 1191-1203. https://doi.org/10.1021/acs.jchemed.6b00062
    Von Der Gracht, H. A. (2012). Consensus measurement in Delphi studies: review and implications for future quality assurance. Technological forecasting and social change, 79(8), 1525-1536. https://doi.org/10.1016/j.techfore.2012.04.013
    Vygotsky, L. S. (2004). Imagination and creativity in childhood. Journal of Russian and East European Psychology, 42 (1), 7–97. https://doi.org/10.1080/10610405.2004.11059210
    Wallas, G. (1926). The art of thought. Harcour Brace and World.
    Wang, H. H., & Deng, X. (2022). The Bridging Role of Goals between Affective Traits and Positive Creativity. Education Sciences, 12(2), 144. https://doi.org/10.3390/educsci12020144
    Wang, Y., & Lu, H. (2021). Validating items of different modalities to assess the educational technology competency of pre-service teachers. Computers & Education, 162, 104081. https://doi.org/10.1016/j.compedu.2020.104081
    Wells, J., Lammi, M., Gero, J., Grubbs, M. E., Paretti, M., & Williams, C. (2016). Characterizing Design Cognition of High School Students: Initial Analyses Comparing Those with and without Pre-Engineering Experiences. Journal of Technology Education, 27(2), 78-91. https://doi.org/10.21061/jte.v27i2.a.5
    Williams, F. E. (1970). Classroom ideas for encouraging thinking and feeling (2nd ed.). D.O.K. Publishers Inc.
    Williams, F. E. (1972). Identifying and Measuring Creative Potential: Part of A Total Creativity Program for Individualizing and Humanizing the Learning Process. Volume One. Educational Technology Publications.
    Williams, F. E. (1979). Assessing creativity across Williams" cube" model. Gifted Child Quarterly, 23(4), 748-756. https://doi.org/10.1177/001698627902300406
    Williams, F. E. (1980). Creativity Assessing Packet (CAP): Manual. D.O.K. Pub.
    Yang, X., Zhang, M., Zhao, Y., Wang, Q., & Hong, J. C. (2022). Relationship between creative thinking and experimental design thinking in science education: Independent or related. Thinking Skills and Creativity, 46, 101183. https://doi.org/10.1016/j.tsc.2022.101183
    Yee-King, M., Grierson, M., & d'Inverno, M. (2017). Evidencing the value of inquiry based, constructionist learning for student coders. International Journal of Engineering Pedagogy, 7(3), 109-129. https://doi.org/10.3991/ijep.v7i3.7385
    Yi, S., Yun, R., Duan, X., & Lu, Y. (2021). Similar or different? a comparison of traditional classroom and smart classroom’s teaching behavior in China. Journal of Educational Technology Systems, 49(4), 461-486. https://doi.org/10.1177/0047239521988999
    Young, J. D., & Lewis, S. E. (2022). Evaluating Peer-led team learning integrated into online instruction in promoting general chemistry student success. Journal of Chemical Education, 99(3), 1392-1399. https://doi.org/10.1021/acs.jchemed.1c01118
    Yu, H., Shi, G., Li, J., & Yang, J. (2022). Analyzing the Differences of Interaction and Engagement in a Smart Classroom and a Traditional Classroom. Sustainability, 14(13), 8184. https://doi.org/10.3390/su14138184
    Zarei, M., Zeinalipour, H., & Samawi, S. A. W. (2022). Identify the components of the STEAM curriculum in elementary school. International Journal of Pediatrics, 10(4), 15789-15801. https://doi.org/10.22038/IJP.2021.57034.4471
    Zhang, Y. R., Hu, R. F., Liang, T. Y., Chen, J. B., Wei, Y., Xing, Y. H., & Fang, Y. (2022). Applying formative evaluation in the mentoring of student intern nurses in an emergency department. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.974281

    無法下載圖示 校內:2028-08-04公開
    校外:2028-08-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE