| 研究生: |
陳英鴻 Chen, Ying-Hong |
|---|---|
| 論文名稱: |
光達點雲資料連結點匹配之研究 Tie Point Matching for LiDAR Point Cloud Data |
| 指導教授: |
曾義星
Tseng, Yi-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 光達 、雷射掃瞄 、NCC匹配 |
| 外文關鍵詞: | lidar, NCC matching, laser scanner |
| 相關次數: | 點閱:52 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
光達觀測所得到的是高密度點雲資料,具有詳細記錄地表以及物體表面資訊之特性,然而完整的觀測常需要透過多測站或多航帶的掃瞄,於是產生多測站或多航帶點雲資料結合問題。透過重疊點雲資料之共軛點位進行地面光達點雲資料的結合是常用的方法,而空載光達的應用亦常需以共軛點位進行航帶平差。由於點雲資料並非規則的分佈,亦無直接共軛的掃瞄點,必須透過點雲資料的分佈情形來決定共軛的位置。而且點雲資料具有三維分佈的特性,以傳統影像匹配的理論並不適用,因此本研究之目的,在於以符合點雲三維分佈特性之三維規則網格結構概念,對點雲資料進行匹配,以其自動化獲得點雲之共軛點位。
本研究將點雲資料所處空間進行三維規則網格切割,並以三維的標準化互相關(NCC)匹配法進行點雲的匹配工作。計算得搜尋空間的NCC值後則利用動差之統計特性,分別以一階原點動差以及二階中心動差,對三維分佈的NCC值進行定位以及匹配方向性的評估。如此則可利用一階原點動差決定匹配的位置,而以二階中心動差界定匹配的準確度。
實驗中所使用的點雲資料包括, Optech ILRIS-3D地面光達的建物掃瞄資料,以及Leica ALS 40空載光達系統之空載光達點雲資料。經實驗顯示本研究所提出之方法,除可成功地將地面以及空載之三維網格化點雲資料作匹配外,以二階中心動差評估匹配之方向性,則提供一項具方向性的匹配成果指標,使得三維網格點雲資料之匹配,在將來的應用上更具潛力。
Abstract
Point cloud data collected by using scanners records the surface information of scanned objects. A complete observation is frequently composed of several scans, so that how to merge multi-scanned data sets becomes an important issue. Finding conjugate points in the overlapped parts of scanned data sets and calculating the coordinate transformation parameters are the common steps of merging point cloud data. However, the distribution of point cloud is not regular, so that there are no direct corresponding points. A conjugate point has to be derived through a match or an analysis of the distributions of points between the conjugate areas. This thesis presents a point cloud matching method to find conjugate points for Lidar data.
The proposed matching method works based on a 3D regular grid structure data which can be obtained by interpolating the point cloud data into a 3D grid. Therefore, 3D Normalized Cross-Correlation Matching (NCC) can be applied. The matching position and matching quality can be estimated by analyzing the NCC coefficients. The first order original moment of NCC coefficients are used to estimate the matching position, and the second order central moments of the NCC coefficients are used to estimate the quality in each direction.
The test data applied in this research includes a set of airborne laser scanning data and a set of ground laser scanning data. The effects of grid size and the use of intensity data in the matching process were analyzed. The experimental results show that 3D grid structuring point cloud data could be matched successfully, and matching quality can be estimated by using the second moments of NCC coefficients.
參考文獻
張祖勛與張劍清,1999,『數字攝影測量學』,武漢大學,pp.164-172。
王蜀嘉與曾義星,2003,內政部委託研究計畫報告書。
曾義星與史天元,2002,『三維雷射掃瞄技術及其在工程測量上之應用』,第二十一屆測量學術及應用研討會。
賴志恆,2003,『雷射掃瞄點雲資料八分數節構畫之研究』,國立成功大學測量與空間資訊學系研究所碩士論文。
賴志凱,2004,『地面雷射掃瞄儀的精度分析與檢定』,國立成功大學測量與空間資訊學系研究所碩士論文。
郭朗哲,2004,『地面光達於崩塌地潛勢製圖之應用』,國立交通大學土木工程學系碩士論文。
Ackermann, F., 1992, Laserabtastung zur Küsten und Wattvermessung Zfv 17, pp. 24-35.
Ackermann, F., 1999, “Airborne laser scanning-present status and future expections’’, ISPRS Journal of Photogrammetry & Remote Sensing 54(1999)64-67.
Behan, A., 2000, “On the Matching Accuracy of Rasterised Scanning Laser Altimeter Data”, IAPRS, Vol. 33, Part2.
Besl, P. j. and McKay, N. D., 1992, “A method for registration of 3-D shape”, IEEE Trans.Pattern Analysis and Machine Intelligence, 14(2):239-256.
Burman, H., 2000, “Adjustment of Laser Scanner Data for Correction of Orientation Errors”, International Archives of Photogrammetry and Remote Sensing, Amsterdam, pp. 125-132.
Huising, E.J. and Pereira, L.M.G., 1998, “Errors and Accuracy Estimates of Laser Data Acquired by Various Laser Scanning Systems for Topographic Application”, ISPRS Journal of Photogrammetry & Remote Sensing, 53: pp. 245-261.
Maas, H. G., 1999, “Fast Determination of Parametric House Models From Dense Airborne Laserscanner Data”, ISPRS Workshop on Mobile Mapping Technology.
Maas, H. G., 2000, ”Least-Squares Matching with Airborne Laserscanning Data in a TIN Structure”, International Archives of Photogrammetry and Remote Sensing, vol.33, Part 3A, pp. 548-555 Amsterdam, 2000.
Morin, K., El-Sheimy, N., 2001, “A Comparison of Airborne Laser Scanning Adjustment Methods.”, ISPRS WGII/2 Three-Dimensional Mapping from InSAR and LIDAR Workshop Proceedings, Banff, Alberta, Canada, July 11-13.
Morin, K., El-Sheimy, N., 2002, “Post-mission Adjustment Method of Airborne Laser Scanning Data.”, FIG XXII International Congress Washington, D.C. USA, April 19-26.
Schenk, T., 2001, “Modeling and Recovering Systematic Errors in Airborne Laser Scanners”, OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models, Stockholm, pp. 40-48.
Schenk, T., 1999, “Digital Photogrammetry”, vol. I, TerraScience. pp.231-266
Vosselman, G. and Maas, H.G., 2001, “Adjustment and Filtering of Raw Laser Altimetry Data”, OEEPE Workshop on Airborne Laserscanning.
Wehr, A. and Lohr, U., 1999, “Airborne Laser Scanning—An Introduction and Overview”, ISPRS Journal of Photogrammetry & Remote Sensing, vol. 54, pp. 68-82.
Woo, H., Kang, E., Wang, S. and Lee, K. H., 2002, “A New Segmentation Method For Point Cloud Data”, International Journal of Machine Tools & Manufacture, vol.42, pp. 167–178.