簡易檢索 / 詳目顯示

研究生: 謝意誠
Hsieh, Yi-Cheng
論文名稱: 有限元素分析圓孔管在彎矩控制循環彎曲負載下之力學行為
Finite Element Analysis on the Mechanical Behavior of Round-Hole Tubes under Moment-Controlled Cyclic Bending
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 49
中文關鍵詞: 6061-T6鋁合金圓孔管循環彎曲負載對稱彎矩控制有限元素ANSYS分析曲率橢圓化
外文關鍵詞: 6061-T6 Aluminum Alloy Round-Hole Tubes, Cyclic Bending, Symmetrical Moment-Controlled, Finite Element ANSYS Analysis, Curvature, Ovalization
相關次數: 點閱:132下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文給予適當的應力-應變關係、材料模型、網格元素、邊界條件與負載條件,則有限元素分析軟體ANSYS Workbench 19.0可使用來描述不同圓孔直徑的6061-T6鋁合金圓孔管在對稱彎矩控制循環彎曲負載下的力學行為(彎矩-曲率關係和橢圓化-彎矩關係)。本研究共考慮五種不同的圓孔直徑分別為:2、4、6、8與10 mm,五種不同的對稱控制彎矩分別為: 700、 600、 500、 400和 300 N-m。從劉柏佑[16]的實驗結果顯示,從第一圈起彎矩-曲率關係即形成一個迴圈,而隨著循環圈數的增加,迴圈的寬度會漸漸的增加,且對稱控制彎矩越大時,迴圈就越大,圓孔直徑越大時,迴圈就越大,但當對稱控制彎矩太小時,彎矩-曲率關係會呈線性的關係。至於橢圓化-彎矩關係則呈現棘齒、不對稱、蝴蝶結狀的增加趨勢,圓孔直徑越大時,橢圓化就越大,且對稱控制彎矩越大時,橢圓化就越大。最後,有限元素ANSYS分析結果與實驗結果相互比較後可發現,有限元素ANSYS分析可以合理的描述實驗結果。

    In this paper, the finite element software ANSYS Workbench 2019 R1 is used to analyze the mechanical response of 6061-T6 aluminum alloy round-hole tubes with hole diameters of 2, 4, 6, 8 and 10 mm subjected to moment-controlled cyclic bending. The mechanical response includes the moment-curvature and ovalization-moment relationships. The controlled symmetrical moments are include: 700、 600、 500、 400, and 300 N-m. According to the experimental result from Liu [16], the moment-curvature relationship shows a loop from the first bending cycle. The width of the loop increases as the number of the bending cycles increases. In addition, a larger controlled moment leads to a larger loop and a larger hole diameter causes a larger loop. When the controlled moment is too small, the moment-curvature relationship becomes linear. As for the ovalization-moment relationship, it presents a ratchetting, asymmetrical, bow-like and increasing trend. In addition, a larger hole diameter causes a larger ovalization and a larger controlled moment leads to a larger ovalization. Finally, by comparison of the ANSYS analysis and the experimental finding, it can be found that the ANSYS analysis can properly simulate the experimental data.

    摘要i 目錄viii 圖目錄x 表目錄xii 符號說明xiii 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 1 1-3 研究目的 6 第二章 基本理論 8 2-1 彈塑性變形理論 8 2-2 有限元素法 13 2-3 有限元素分析軟體 ANSYS Workbench 2019 R1 介紹 16 2-3-1預處理(pre-processing) 16 2-3-2 有限元素分析 18 2-3-3 後處理(post-processing) 19 第三章 ANSYS Workbench 分析 20 3-1 材料參數設定 20 3-2 有限元素模型建立 22 3-2-1 幾何模型 22 3-2-2 網格元素 23 3-2-3 網格設定 24 3-3 邊界條件與負載設定 26 3-4 求解條件與設定 30 第四章 分析結果 33 4-1 實驗介紹 33 4-2 彎矩與曲率之關係 34 4-2-1 實驗結果 34 4-2-2 ANSYS分析結果 38 4-3 彎矩與橢圓化關係 41 4-3-1 實驗結果 41 4-3-2 ANSYS分析結果 44 第五章 結論 47 參考文獻 48

    1. W. F. Pan, T. R. Wang and C. M. Hsu, A curvature-ovalization measurement apparatus for circular tubes under cyclic bending, Experimental Mechanics, Vol. 38, No. 2, pp. 99-102 (1998).
    2. K. L. Lee, W. F. Pan and J. N. Kuo, The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending, International Journal of Solids and Structures, Vol. 38, No. 14, pp. 2401-2413 (2001).
    3. W. F. Pan and K. L. Lee, The effect of mean curvature on the response and collapse of thin-walled tubes under cyclic bending, JSME International Journal, Series A, Vol. 45, No. 2, pp. 309-318 (2002).
    4. K. H. Chang, W. F. Pan and K. L. Lee, Mean moment effect on circular thin-walled tubes under cyclic bending, Structural Engineering and Mechanics, Vol. 28, No. 5, pp. 495-514 (2008).
    5. K. L. Lee, C. Y. Hung, H. Y. Chang and W. F. Pan, Buckling life estimation of circular tubes of different materials under cyclic bending, Journal of Chinese Institute Engineers, Vol. 33, No. 2, pp. 177-189 (2010).
    6. K. L. Lee, C. Y. Hung and W. F. Pan, CCD digital camera system for measuring curvature and ovalization of each cross-section of circular tube under cyclic bending, Journal of Chinese Institute Engineers, Vol. 34, No. 1, pp. 75-86 (2011).
    7. K. L. Lee, C. Y. Hung and W. F. Pan, Variation of ovalization for sharp-notched circular tubes under cyclic bending, Journal of Mechanics, Vol. 26, No. 3, pp. 403- 411 (2010).
    8. K. H. Chang and W. F. Pan, Buckling life estimation of circular tubes under cyclic bending, International Journal of Solids and Structures, Vol. 46, No. 2, pp. 254-270 (2009).
    9. K. L. Lee, C. M. Hsu and W. F. Pan, The influence of mean curvatures on the collapse of sharp-notched circular tubes under cyclic bending, Journal of Chinese Society of Mechanical Engineering, Vol. 34, No. 5, pp. 461-468 (2013).
    10. C. C. Chung, K. L. Lee and W. F. Pan, Collapse of sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending, International Journal of Structural Stability and Dynamics, Vol. 16, No. 7, 1550035 [24 pages] (2016).
    11. K. L. Lee, K. H. Chang and W. F. Pan, Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending, Structural Engineering & Mechanics, Vol. 60, No. 3, pp. 365-386 (2016).
    12. C. C. Chung, K. L. Lee and W. F. Pan, Finite element analysis on the response of 6061-T6 aluminum alloy tubes with a local sharp cut under cyclic bending, Journal of Vibroengineering, Vol. 18, No. 7, pp. 4276-4284 (2016).
    13. K. L. Lee, K. H. Chang and W. F. Pan, Effect of notch depth and direction on stability of local sharp-notched circular tubes subjected to cyclic bending, International Journal of Structural Stability and Dynamics, Vol. 18, No. 7, 1850090 [23 pages] (2018).
    14. K. L. Lee, M. L. Weng and W. F. Pan, On the failure of round-hole tubes under cyclic bending, Journal of Chinese Society of Mechanical Engineering, Vol. 40, No. 6, pp. 663-673 (2019).
    15. K. L. Lee, L. C. Chin and W. F. Pan, Elastoplastic response and failure of round-hole tubes under cyclic bending, Informatica Journal, Vol. 31, No. 4, pp. 23-41 (2020).
    16. 劉柏佑,圓孔管在彎矩控制循環彎曲負載下之響應與失效,國立成功大學工程科學研究所碩士論文(2021)。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE