| 研究生: |
丁言民 Ting, Yan-Min |
|---|---|
| 論文名稱: |
氮化硼燃燒合成製程開發 Process Development for Combustion Synthesis of Boron Nitride |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 氮化硼 、燃燒合成法 |
| 外文關鍵詞: | Boron nitride, Combustion synthesis |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以燃燒合成法製備六方晶氮化硼,主要研究為探討氮化硼製程技術開發與純化技術之建立。製程技術研究依反應物重量分為160g級合成及1kg級合成,其中160g級合成又依照有無保溫分成兩部分討論。本製程技術反應物為氧化硼、鎂粉、氯化銨及氮氣,皆以自製鋁箔容器裝填以上反應物粉體,反應體呈現疏鬆且具高孔隙度,因此提高起始氮氣壓力能夠增加進入反應體的氮氣量,故能夠提升反應性,有助於提高轉化率與氮化硼產量,但由於氮化反應的放熱現象使反應體中心部分燃燒溫度高於硼熔點,導致硼融聚現象發生而有氮化硼產量減少的情況。氯化銨為催化劑,可提供低活化能的反應途徑,氯化銨受熱分解成氯化氫與硼形成氯化硼,經由氮化反應生成氮化硼。透過擺放隔熱材於反應體外圍可提高反應溫度且防止氯化氫氣體流失至腔體而失去催化劑作用,因此可減少硼生成。160g級無保溫製程中,最高轉化率可達80%,氮化硼產量最高可達17%(理論值為29%)。160g級保溫製程中,最高轉化率可達84%,氮化硼產量最高可達20%。在1kg級製程中,最高轉化率可達88%,氮化硼產量最高可達19%。本製程之產物除了氮化硼外還含有副產物氧化鎂、氧化硼鎂及硼等存在,以上副產物皆可由酸洗去除,因此本研究針對酸洗時間及混和酸使用量探討其純化效果。
Hexagonal boron nitride powder was synthesized by the combustion synthesis (SHS) method. The SHS processes reported in the present study were divided into two parts depending on reactant weight. In the first part, 160 g reactants were synthesized in the small reactor and we can divide this part into two section depending on whether we do heat preservation or not; in the second part, 1 Kg reactant were synthesized in the bigger reactor. In these two process, the synthesis of h-BN powders used Mg, B2O3, NH4Cl, and nitrogen gas as reactant. The reactant powders were mixed and placed in the perforated aluminum container. Because of a loose and highly porous structure of the powder stack, the N2 can penetrate into reactant easily, and make the nitridation reaction better. So increasing initial N2 pressure can increase conversion and BN yield. But coalescence of molten boron took place when the temperature was higher than the melting point of boron and decrease BN yield. Addition of NH4Cl was found that it can promote the conversion because it made an easier path for the nitridation of boron by first converting boron to BClx, which then react with N2 to generate BN. By placing the aluminum oxide insulation materials around the containers, called heat preservation process, can increase reaction temperature and keep HCl around reactant, which can reduce generation of boron. In 160 g reactant synthesis process, no heat preservation, a maximum conversion of 80% was achieved, a maximum BN yield of 17% was achieved. In heat preservation process, a maximum conversion of 84% was achieved, a maximum BN yield of 20% was achieved. In 1 Kg reactant synthesis process, a maximum conversion of 88% was achieved, a maximum BN yield of 19% was achieved.
Combustion synthesis of h-BN not only had the product of h-BN but also had other by-products (e.g., MgO, Mg3B2O6 and B). By-products can be removed by acid treatment. Result of acid wash condition were also explored.
1.R.T. Paine, C.K. Narula. Synthetic routes to boron nitride. Chem Rev. 90(1):73-91, 1990.
2.Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, H. Nishikawa. Boron nitride as a lubricant additive. Wear. 232(2):199-206, 1999.
3.A. Lipp, K.A. Schwetz, K. Hunold. Hexagonal boron nitride: Fabrication, properties and applications. Eur Ceram Soc. 5(1):3-9, 1989.
4.E.K. Sichel, R.E. Miller, M.S. Abrahams, C.J. Buiocchi. Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Physical Review B. 13(10):4607, 1976.
5.Y. Xu, D.D.L. Chung. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Composite Interfaces. 7(4):243-256, 2000.
6.X. Wang, A. Pakdel, J. Zhang, Q. Weng, T. Zhai, C. Zhi, et al. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Res Lett. 7(1):662, 2012.
7.C. Zhi, Y. Bando, T. Terao, C. Tang, H. Kuwahara, D. Golberg. Boron Nanotube-Polymer Composites: Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers (Adv. Funct. Mater. 12/2009). Adv Funct Mater. 19(12):1857-1862, 2009.
8.G. Posole, A. Gervasini, C. Guimon, A. Auroux, B. Bonnetot. Influence of the Preparation Method on the Surface Characteristics and Activity of Boron-Nitride-Supported Noble Metal Catalysts. J. Phys. Chem. B, 110 (25), pp 12572–12580, 2006.
9.G. Postolea, b, A. Gervasinic, M. Caldararub, B. Bonnetotd, A. Aurouxa, Is BN an appropriate support for metal oxide catalysts? Appl Catal, A. 325(2):227-236, 2007.
10.Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science. 317(5840):932-934, 2007
11.Y.C. Zhu, Y. Bando, D.F. Xue, T. Sekiguchi, D. Golberg, F.F. Xu, et al. New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J Phys Chem B. 108(20):6193-6196, 2004.
12.E. Martin, L. Christoph, D. Ralf, R. Bernd, E. Jens. Hexagonal Boron Nitride (hBN): Applications from Metallurgy to Cosmetics. CFI Ceramic forum international, 84:0173-9913, 2007
13.http://kinetics.nist.gov/janaf/. cited; Available from: HTTP://KINETICS.NIST.GOV/JANAF/
14.D.M. Hoffman, G.L. Doll, P.C. Eklund. Optical properties of pyrolytic boron nitride in the energy range 0.05—10 eV. Physical review B. 30(10):6051, 1984.
15.R. Geick, C. Perry, G. Rupprecht. Normal modes in hexagonal boron nitride. Phys Rev. 146(2):543, 1966.
16.T. Takahashi, H. Itoh, M. Kuroda. Structure and properties of CVD-BN thick film prepared on carbon steel substrate. J Cryst Growth. 53(2):418-422, 1981.
17.M. W. Chase, Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1-1951, 1998.
18.C. Zhi, Y. Bando, C. Tan, D. Golberg. Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun.135(1-2):67-70, 2005
19.S.J. Yoon, A. Jha. Vapour-phase reduction and the synthesis of boron-based ceramic phases. J Mater Sci. 30(3):607-614, 1995.
20.F.L. Deepak, C.P. Vinod, K. Mukhopadhyay, A. Govindaraj, C.N.R. Rao. Boron nitride nanotubes and nanowires. Chem Phys Lett. 353(5-6):345-352, 2002.
21.A.G. Merzhanov. Self-propagating high-temperature synthesis: twenty years of search and findings. Combustion and plasma synthesis of high-temperature materials.1-53, 1990.
22.A. Merzhanov. SHS on the Pathway to Industrialization. International Journal of Self Propagating High Temperature Synthesis.10(2):237-56, 2001
23.A. Varma, J-P Lebrat. Combustion synthesis of advanced materials. Chem Eng Sci. 47(9):2179-2194, 1992.
24.J. Holt, Z. Munir. Combustion synthesis of titanium carbide: theory and experiment. J Mater Sci. 21(1):251-259, 1986.
25.Z.A. Munir, U. Anselmi-Tamburini. Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Materials Science Reports. 3(7):277-365, 1989.
26.J. Holt, S. Dunmead. Self-heating synthesis of materials. Annu Rev Mater Sci. 21(1):305-34, 1991.
27.A. Varma, J-P Lebrat. Combustion synthesis of advanced materials. Chem Eng Sci. 47(9):2179-2194, 1992.
28.J. Holt, Z. Munir. Combustion synthesis of titanium carbide: theory and experiment. J Mater Sci. 21(1):251-259, 1986.
29.A. Merzhanov. The theory of stable homogeneous combustion of condensed substances. Combustion and Flame. 13(2):143-56, 1969.
30.Z.A. Munir, J.B. Holt. The combustion synthesis of refractory nitrides. J Mater Sci. 22(2):710-714, 1987.
31.A. Atkinson, A.J. Moulson, E. Roberts. Nitridation of High‐Purity Silicon. J Am Ceram Soc. 59(7‐8):285-289, 1976.
32.黃其清. 燃燒合成製程研究:氮化鋁、氮化硼粉體之合成及鈦+碳 / 鈦+鋁系統之反應機構; 國立成功大學博士論文, 86年畢業
33.A.P. Amosov, G.V. Bichurov, N.F. Bolshova, V.M. Erin, A.G. Makarenko, YM Markov. Azides as Reagents in SHS Process. International Journal of Self-Propagating High-Temperature Synthesis.1(2):239, 1992.
34.C-C Hwang, S-L Chung. Combustion synthesis of boron nitride powder. J Mater Res. 13(03):680-6, 1998.
35.Y.H Hsu, S.L Chung. Combustion synthesis of boron nitride via magnesium reductionusing additives. Ceramics International. 41(1): 1457-1465, 2015.
36.A.G. Merzhanov. New manifestations of an ancient process. In: Rao CNR, editor. Chemistry of Advanced Materials: A Chemistry for the 21st Century: Blackwell Science Inc. p. 19-39; 1993.
37.J.A. Puszynski. Thermochemistry and kinetics. In: Weimer AW, editor. Carbide, Nitride and Boride Materials Synthesis and Processing: Springer Netherlands. p. 183-228; 1997.
38.I.P. Borovinskaya. Chemical Classes of the SHS Processes and Materials. Pure Appl Chem.; 64(7):919-940, 1992.
39.S.D. Dunmead, Z.A. Munir, J. Birch Holt. Gas-solid reactions under a self-propagating combustion mode. Solid State Ionics; 32-33(PART 1):474-481, 1989.
40.A.G. Merzhanov. SHS on the Pathway to Industrialization. Inter J SHS. //;10(2):237-255, 2001
41.C.N. Lin, S.L. Chung. Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers. J Mater Res. 16(12):3518-3525, 2001.
42.A.S. Mukasyan. Combustion Synthesis of Silicon Carbide. Properties and Applications of Silicon Carbide: INTECH. p. 289-409; 2011.
43.T. Tsuchida, T. Kitagawa, M. Inagaki. Self-propagating high-temperature synthesis of AlN in a graphite crucible in air by mechanical activation. J Mater Sci. 32(19):5123-5126, 1997.
44.M. Eslamloo-Grami, Z.A. Munir. Effect of Nitrogen Pressure and Diluent Content on the Combustion Synthesis of Titanium Nitride. J Am Ceram Soc. 73(8):2222-2227, 1990.
45.S.L. Chung, C.W Chang, Aires FJCS. Reaction mechanism in combustion synthesis of α-Si3N4 powder using NaN3. J Mater Res. 23(10):2720-2726, 2008
46.W.C Lee, S.L Chung. Combustion synthesis of Si3N4 powder. J Mater Res. 12(03):805-811, 1997.
47.A.P. Amosov., G.V. Bichurov., Y.M. Markov, A.G. Makarenko. Production of nitride and carbonitride powders from inorganic azides by self-propagating high-temperature synthesis. Refract Ind Ceram. 38(11-12):431-434, 1997.
48.A.W. Laubengayer, D.T. Hurd, A.E. Newkirk., J.L. Hoard. I.. Boron. Preparation and Properties of Pure Crystalline Boron. J Am Chem. 65(10): 1924–1931, 1943.
校內:2022-07-28公開