簡易檢索 / 詳目顯示

研究生: 蘇盟傑
Sue, Meng-Chieh
論文名稱: 量子通訊衛星的運作與模擬
Operation and Simulation of Quantum Communication Satellite
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 135
中文關鍵詞: 量子通訊量子糾纏量子通訊衛星光子衰減ATP 追蹤系統
外文關鍵詞: quantum communication, quantum entanglement, quantum communication satellite, photon attenuation, ATP system
相關次數: 點閱:136下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如果說20 世紀是電磁波通訊的世紀,21 世紀無疑將是量子通訊的世紀。量子通訊的物理基礎是量子糾纏態的非定域特性,此特性表明二個糾纏粒子不管被分隔多遠,只要它們仍保持在糾纏態,它們之間的量子瞬間關聯性就不會改變。除了非定域特性,單光子的不可分割性和量子態的不可複製特性確保了量子訊息無法被竊聽的絕對安全性。數十年來,糾纏粒子間之非定域特性從數十公尺到數百公里的地面分隔均已被實驗陸續證實,而2016 年由中國發射的全球首顆量子通訊衛星「墨子號」更進一步從太空的大尺度驗證糾纏粒子的瞬間關聯性仍然存在。量子通訊衛星的出現代表全球量子通信網絡的時代即將來臨。
    雖然國內自行研發的福爾摩沙衛星系列,目前已來到福衛五號(光學通訊衛星),但國內關於量子通訊衛星的研究其實尚未啟動。為了讓台灣提早進入量子通訊衛星的研究,本論文率先提出建構本土量子通訊衛星的可行性研究。同時基於光學通訊衛星與量子通訊衛星之間的相似性,本論文探討如何在既有的福爾摩沙衛星的系統架構下,進行量子通訊實驗。論文主要分成四大部分,分別解決實現量子通訊衛星所將面對的四大問題:
    1. 如何在衛星上製備糾纏光子對?
    2. 如何克服光子在穿越大氣的傳輸過程中,其量子糾纏度的下降問題?
    3. 地面接收站如何進行光子的追蹤與捕獲?
    4. 二個地面接收站之間如何進行量子通訊實驗?
    本論文將設計一顆未來的福爾摩沙量子通訊衛星,討論其內部硬體組成與軌道運作,分析其內量子通訊的進行程序,並模擬其與二個地面接收站(現有的成功大學與中央大學衛星地面接收站)之間的光子傳輸過程。本論文成果將可做為台灣自行研發量子通訊衛星的一個可行性評估報告。

    In this thesis, we will design a future Formosa quantum communication satellite to discuss its internal hardware composition and orbit operation, analyze its quantum communication procedures, and simulate it with two ground receiving stations (the two existing Formosa ground stations, respectively, at Cheng Kung University and Central University) to demonstrate the photon transmission process. The results of this paper will serve as a feasibility analysis report for Taiwan's own development of quantum communication satellites.
    The physical basis of quantum communication is the nonlocal property of quantum entangled states. This characteristic shows that the quantum entanglement between two particles does not change with distance as long as they remain in the entangled state. In addition to the nonlocal characteristic, the indivisibility of single photons and the non-replicable nature of quantum states ensure the absolute security of quantum communication because quantum information cannot be eavesdropped.
    The thesis is divided into four parts, respectively, to solve the four major issues that will be faced in the realization of quantum communication satellite:
    1. How to prepare an entangled photon pair on a satellite?
    2. How to overcome the decline of the quantum entanglement in the photon pair in the transmission through the atmosphere?
    3. How to perform photon tracking and photon capturing at the ground receiving station?
    4. How to perform quantum communication experiments between two ground receiving stations?

    摘要 I Operation and Simulation of Quantum Communication Satellite II 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XV 符號表 XVI 第 1 章 緒論 1 1.1 21世紀的通訊技術:量子通訊 1 1.2 背景及文獻回顧 3 1.3 研究動機 4 1.4 文章架構 5 第 2 章 古典通訊與衛星通訊 7 2.1 古典通訊種類 7 2.1.1 電磁波通訊 7 2.1.2 光纖通訊 8 2.1.3 自由空間光通訊 8 2.2 衛星通訊種類 10 2.2.1 地球同步軌道衛星 11 2.2.2 太陽同步軌道衛星 12 2.2.3 墨子號太陽同步衛星的優勢 14 第 3 章 量子通訊的物理基礎-量子糾纏態 17 3.1 EPR謬論及Bell不等式 17 3.2 糾纏態非定域性的實驗證明 20 3.3 量子糾纏態的基本性質 21 第 4 章 量子通訊技術 23 4.1 量子通訊簡介 23 4.2 量子通訊常見類型 24 4.2.1 基於量子密鑰分發的量子保密通訊系統 24 4.2.2 量子間接通訊 29 4.2.3 量子安全直接通訊 32 4.3 糾纏光子對的製備 33 4.4 建立Jaynes-Cummings模型 40 4.5 利用Jaynes-Cummings模型實現量子隱形傳輸 42 第 5 章 大氣衰減對量子通訊的影響 47 5.1 地面大氣衰減的克服方法 47 5.2 大氣衰減的種類及數值模擬 48 5.2.1 大氣衰減效應 48 5.2.2 衛星動態軌跡 53 5.2.3 大氣湍流效應 56 5.3 大氣衰減的限制 57 第 6 章 捕獲、指向、追蹤系統 59 6.1 捕獲、指向、追蹤系統介紹 59 6.1.1 捕獲、指向、追蹤系統運作程序 60 6.1.2 捕獲、指向、追蹤系統的收發過程 60 6.2 粗追蹤系統的數學建模及硬體設備 61 6.2.1 CCD光斑探測器和訊號處理單元 62 6.2.2 等效正弦函數 63 6.2.3 粗追蹤系統之速度迴路 63 6.2.4 粗追蹤系統之補償單元 66 6.2.5 D/A轉換單元 68 6.3 精追蹤系統的數學建模及硬體設備 68 6.3.1 CCD光斑探測器 69 6.3.2 精追蹤之伺服系統 69 6.3.3 精追蹤系統之等效正弦函數與補償單元 71 6.4 捕獲、指向、追蹤系統之誤差模擬 74 6.4.1 捕獲、指向、追蹤系統之誤差形成原因 74 6.4.2 粗追蹤系統之MATLAB誤差模擬 75 6.4.3 精追蹤系統之MATLAB誤差模擬 80 第 7 章 量子通訊衛星 88 7.1 量子中繼器 88 7.1.1 糾纏交換 90 7.1.2 糾纏純化 92 7.2 傳統光學通訊衛星 93 7.3 傳統/量子光學通訊衛星之差異 97 7.4 量子通訊衛星的整合運作及動畫模擬 101 7.4.1 墨子號之通訊傳輸距離 101 7.4.2 量子密鑰分發模擬影片 107 7.4.3 量子隱形傳輸模擬影片 114 第 8 章 總結 125 8.1 結果與討論 125 8.2 未來展望 126 參考文獻 127 附錄A 132 附錄B 134

    [1]Aspect, A., Grangier, P., Roger, G., Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers, Phy. Rev. Lett., Vol. 49:1804-1807, 1982.
    [2]Bennett, C.H., Brassard, G., Quantum cryptography Public key distribution and coin tossing, Proc. IEEE Int. Conf. on Computers, System and Signal Processing Bangalore, India. 1984, 175-179.
    [3]Bennett, C.H., Brassard, G., Popescu, S., et al., Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels, Phys. Rev. Lett., Vol. 76: 722-725, 1996.
    [4]Bennett, C.H., Quantum Cryptography Using Any Two Nonorthogonal States, Phy. Rev. Lett.,68 (21): 3121-3124,1992.
    [5]Bennett, C.H., Brassard, G., Crepeau, C., et al., Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels, Phys. Rev. Lett., Vol. 70: 1895-1899, 1993.
    [6]Bennett, C.H., Brassard, G., Crepeau, C., Jozsa,A, R.. Peres and Wooters, W.K., Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podosky- Rosen Channels, Phy. Rev. Lett., 70: 1895-1899
    [7]Bohm, D., A Suggested Interpretation of the Quantum Theory in Terms of Hidden Variables. I, Ⅱ, Phy. Rev., Vol. 85:166-179, 1952.
    [8]Briegel, H.J., Dür, W., Cirac, J.I., et al., Quantum Repeater: The Role of Imperfect Local Operations in Quantum Communication, Phys. Rev. Lett., Vol. 81: 5932-5935, 1998.
    [9]Bell, J. S., On The Einstein Podolsky Rosen Paradox, Physics, Vol. 1:192-200, 1964.
    [10]Bao-Sen Shi, Yun-Kun Jiang, Guang-Can Guo, Optimal entanglement purification via entanglement swapping, Phy. Rev. A, Vol. 62, 2000.
    [11]Bao-Sen Shi, Yun-Kun Jiang, Guang-Can Guo, Probabilistic teleportation of two-particle entangled state, Phys. Lett. A, Vol. 268: 161-164, 2000.
    [12]Christian Nietner, Quantum Phase Transition of Light in the Jaynes-Cummings Lattice, Department of Physics Freie Universitat Berlin, 24-33, 2010.
    [13]Cirac, J.I., Parkins, A.S., Schemes for atomic-state teleportation, Phys. Rev. A, Vol. 50: R4441-R4444, 1994.
    [14]Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter, Anton Zeilinger, Experimental quantum teleportation, Nature, 390, 575-579, 1997.
    [15]Einstein, A., Podolsky, B., Rosen, N., Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phy. Rev., Vol. 47:777-780, 1935.
    [16]Ekert, A., Quantum cryptography based on Bell’s theorem, Phy. Rev. Lett.,67: 661,1991.
    [17]Fejer, M.M., Magel, G.A., Jundt, D.H., et al., Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances, IEEE, Vol. 28: 2631-2654, 1992.
    [18]Fedrizzi, A., Herbst, T., Poppe, A., et al., A wavelength-tunable fiber-coupled source of narrowband entangled photons, Optics Express, Vol. 15: 15377-15386, 2007.
    [19]Fedrizzi, B., Magno, F., Moser, S., et al., Concurrent quantification of light and heavy sulphur volatiles in wine by headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry, Wiley InterScience, 21: 707-714, 2007.
    [20]Freedman, S. J., Clauser, J. F., Experimental Test of Local Hidden-Variable Theories, Phy. Rev. Lett., Vol. 28:938-941, 1972.
    [21]Gebhart, M., Leitgeb, E., Muhammad, S.S., et al., Measurement of Light attenuation in dense fog conditions for FSO applications, Proc. of SPIE, Vol. 5891, 2005.
    [22]Guang-Can Guo, Shi-Biao Zheng, Generation of Schrödinger cat states via the Jaynes-Cummings model with large detuning, Phys. Lett. A, 223: 332-336, 1996.
    [23]Hao Jiang, Jianjun Jia, Jianyu Wang, Simulation and Test Platform for Free-Space Quantum Communication, Proc. of SPIE, Vol. 8420, 2012.
    [24]Hao Jiang, Liang Zhang, Jianjun Jia, et al., Simulation of Space Quantum Communication Tracking System with Matlab/Simulink, Springer, 29-36, 2013.
    [25]Hao Jiang, Liang Zhang, Jianjun Jia, et al., Simulation of Space Quantum Communication Tracking System with Matlab/Simulink, Springer, Vol. 207: 29-36, 2013.
    [26]Huang Hong-mei, Xu Lu-ping, Wang Yong, et al., Attenuation characteristic of the QPS Signal in the Airspace, Journal of Astronautics, Vol. 33: 891-895, 2012.
    [27]Jaynes, E.T., Cummings, F.W., Comparsion of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser, Proc. IEEE, Vol. 51: 90-109, 1963.
    [28]Jian-Yu Wang, Bin Yang, Sheng-Kai Liao, et al., Direct and full-scale experimental verifications towards ground-satellite quantum key distribution, Nature Photonics, Vol. 7: 387-393, 2013.
    [29]Kwiat, P.G., Mattle, K., Weinfurter, H., et al., New High-Intensity Source of Polarization-Entangled Photon Pairs, Phys. Rev. Lett., Vol. 75: 4337-4341, 1995.
    [30]Li Di, Chen Hui, Study on attenuation characteristic of laser propagation in rain and fog, Electronic Design Engineering, Vol. 19, 2011.
    [31]Martin Pfennigbauer, Markus Aspelmeyer, Walter R. Leeb, et al., Satellite-based quantum communication terminal employing state-of-the-art technology, Optical Society of America, Vol. No.9 549-560, 2005.
    [32]Martin, P., Walter, R.L., Free-Space Optical Quantum Key Distribution Using Intersatellite Links, CNES, 2003.
    [33]Markus, A., Thomas, J., Martin, P., et al., Long-Distance Quantum Communication With Entangled Photons Using Satellites, IEEE, Vol. 9, 1541-1551, 2003.
    [34]Muhammad, S.S., Köhldorfer, P., Leitgeb, E., Channel Modeling for Terrestrial Free Space Optical Links, IEEE, 407-410, 2005.

    [35]Rarity, J.G., Gorman, P.M., Knight, P.R., et al., Quantum Communications in Space, Proc. of SPIE, Vol. 5161: 240-251, 2004.
    [36]Shor, P.W., Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Rev, 41 (2), 303–332, 1999.
    [37]Shi-Biao Zheng, Guang-Can Guo, Teleportation of an unknown atomic state through the Raman atom-cavity-field interaction, Phys. Lett. A, 232: 171-174, 1997.
    [38]Shi-Biao Zheng, Guang-Can Guo, Teleportation of superpositions of macroscopic states of a cavity field, Phys. Lett. A, 236: 180-182, 1997.
    [39]Song Yan-Song, Tong Shou-Feng, Jiang Hui-Lin, et al.,Variable structure control technology of fine tracking assembly in airborne laser communication system, Infrared and Laser Engineering, Vol.39 No.5 934-938, 2010.
    [40]Tong Shou-Feng, Jiang Hui-Lin, Liu Yun-Qing, et al., Optimum design of bandwidth for the APT coarse tracking assembly in free space laser communication, Opto-Electronic Engineering, Vol. No9. 16-20, 2007.
    [41]Toni Tolker Nielsen, Pointing,Acquisition and Tracking system for the Free Space Laser Communication System,SILEX, SPIE, Vol. 2381: 194-205, 1995.
    [42]Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., et al., Entanglement based quantum communication over 144 km, Nature Physics, 481-486, 2007.
    [43]Xian-Min Jin, Ji-Gang Ren, Bin Yang, et al., Experimental free-space quantum teleportation, Nature Photonics, 376-381, 2010.
    [44]Yoshihisa Takayama, Takashi Jono, Morio Toyoshima, et al., Tracking and pointing characterisrics of OICETS optical terinal in communication demonstrations with ground stations, Proc. of SPIE, Vol. 6457, 2007.
    [45]Zhan Shun-Yuan, Shi Bao-Sen, Guo Guang-Can, Photonic Crystal Fiber For Quantum Information, Progress In Physics, Vol. 28: 35-40, 2008.
    [46]Zukowski, M., Zeilinger, A., Horne, M.A., et al., “Event-Ready-Detectors” Bell Experiment via Entanglement Swapping, Phys. Rev. Lett., Vol. 71: 4287-4290, 1993.
    [47]陳克任, 衛星通訊NII主角, 儒林圖書股份有限公司, 2001.
    [48]張晨潔, 自由空間光通信粗跟蹤伺服轉台控制技術研究, 長春理工大學碩士學位論文, 2008.
    [49]吳瓊, 自由空間激光通信ATP系統精跟蹤控制技術研究, 長春理工大學碩士學位論文, 2008.
    [50]楊志強, 空間光通信ATP系統關鍵技術研究, 燕山大學碩士學位論文, 2008.
    [51]蔡東宏, 福爾摩沙衛星五號系統, 《科學發展》, 518期, 2016.
    [52]楊憲東, 量子控制, 國立成功大學航太所課程講義, 2017.

    無法下載圖示 校內:2022-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE