| 研究生: |
闕瑞甫 Chueh, Jui-Fu |
|---|---|
| 論文名稱: |
大面積鎳銅鋅鐵氧磁體基板之材料及製程研究 Materials and processes to prepare large area NiCuZn ferrite substrates |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 直流電源轉換器模組 、鎳銅鋅鐵氧磁體 、束縛燒結 、直流疊加特性 |
| 外文關鍵詞: | DC superposition, NiCuZn ferrites, constrained sintering |
| 相關次數: | 點閱:159 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於可攜式無線通訊產品不斷往小型化及薄型化發展,而單靠元件之複合化,仍無法完全滿足行動通訊產品對組裝空間之要求,需靠模組化之技術才可進一步節省30-40%之空間,使得直流電源轉換器模組將成為未來可攜式無線通訊產品元件市場之主流,因而使得大面積功率鎳銅鋅鐵氧磁體基板之研究亦成為重要課題。本研究並將第四章結論之“添加2wt% Bi2O3之鎳銅鋅鐵氧磁體之直流疊加特性”採用ZrO2生胚同時作為非磁性介質材料及燒結束縛層,以積層技術整合鎳銅鋅鐵氧磁體及非磁性ZrO2材料,除可解決大面積鎳銅鋅鐵氧磁體基板燒結翹曲、變形及分層之問題外,並可藉由產生之洩漏磁通,破壞磁蕊中之封閉磁性迴路,增加元件之磁飽和量,進而提昇積層晶片電感之直流疊加特性。本研究成功開發出積層型直流電源轉換器模組所需之關鍵技術:(1)具高起始導磁係數、高飽和磁通密度及高額定電流等磁特性之鎳銅鋅鐵氧磁體、(2)可與鎳銅鋅鐵氧磁體共燒之非磁性介質材料、(3)大面積鐵氧磁體基板之束縛燒結技術。
Due to the advances in mobile communications, not only the electronic devices are getting smaller, but also their functions are upgraded continuously. Discrete components cannot completely meet the requirements of miniaturization. Moreover, portable devices continue to develop toward low-profile and multi-functionality, which results in the diversification of operating voltages. Therefore, the demand for integrating individual components into modules to reduce the size and increase the power density for DC-DC converters is increasing.
Therefore, to prepare the large-area power NiCuZn ferrite substrate has become an important issue. In this study, the additional of Bi2O3 effects on the densification mechanism, magnetic properties and DC superposition behavior of NiCuZn ferrites were investigated. Through these investigations the densification mechanism of NiCuZn ferrites added with Bi2O3 was proposed and a suitable compromise between the initial permeability and DC-bias superposition characteristic can be obtained by adding the proper amount of Bi2O3. Moreover, this study also integrated magnetic ZrO2 green sheets acting simultaneously as the magnetic gap and constraining layer ceramic processing and low-pressure assisted constrained sintering technologies to prepare large area NiCuZn ferrite substrates.
This study successfully developed the key technologies for making a DC-DC converter module: (1) a low temperature sintering NiCuZn ferrites with superior DC-bias-superposition characteristics, (2) the nonmagnetic material co-fired with the magnetic NiCuZn ferrites, (3) the low-pressure assisted constrained sintering process for the large area NiCuZn ferrites substrates.
[1] C. Glitzky, T. Rabe, M. Eberstein, W. Schiller, J. Töpfer, S. Barth, A. Kipka, “Microstructural effects in low loss power ferrites” J.Microelectronics Electr. Packaging, 6 1-5 (2009)
[2] R.T. Hsu, J.H. Jean, and Y.Y. Hung, “Stress required to densify a low-fire NiCuZn ferrite under constrained sintering” J. Am. Ceram. Soc. 91 2051-2054 (2008)
[3] Hsiang-I Hsiang, Yi-Lang Liu, “Electrical properties of copper and titanium-codoped zinc ferrites” J. Alloys Compd. 472 516-520 (2009)
[4] Hsing-I. Hsiang, Li-Then Mei, Chi-Shiung Hsi, Yi-Lang Liu, Fu-Su Yen, “Effects of Porosity on Dielectric Properties of BaTiO3 Ceramics” J. Alloys Compd. 502 163–168 (2010).
[5] T.J. Garino and H.K. Bowen, “Kinetics of Constrained Film Sintering” J. Am. Ceram. Soc., 73 251 (1990)
[6] 柯文雄,晶片型電子陶瓷材料及元件技術,工業技術研究院 (1993)
[7] TDK,SMD Pulse Transformer for Ethernet Applications ALT4532 Series,Tech Journal (2011)
[8] TDK,Multilayer Chip Inductor MLG0402Q/MLG0603P,Tech Journal (2011)
[9] Toko,Laminated inductor,Japanese Patent Application Publication No. JP 02-165607 (1990)
[10] M. D. Kingery, D.R. Uhlmann, et al, “Introduction to ceramics,” 2nd Edition, John Wiley & Sons, New York (1976).
[11] 金重勳,磁性技術手冊,中華民國磁性技術協會 (2002)
[12] 山口喬,柳田博明,剛本祥一,近桂一郎,「磁性陶瓷」,黃忠良譯,復漢出版社,台灣 (2001)
[13] 劉向春,ZnO-TiO2系介電陶瓷/NiCuZn鐵氧磁體疊層低溫共燒兼容特性研究,西北工業大學,博士論文,(2006)
[14] Alex Goldman, Modern ferrite technology, Spring, NY (2006)
[15] Raul Valenzuela, Magnetic ceramics, Cambridge University Press, NY (1994)
[16] C.Guillaund,“Effect of copper ion distribution on the magnetization of nanoscaled NiZn ferrite”J. Phys. Rad., 12 239, (1951).
[17] 陳皇均,陶瓷材料概論下,曉園出版社,(1992)
[18] [18]張雲峰,高磁導率NiCuZn鐵氧磁體材料研究,電子科技大學,碩士論文
[19] 劉向春,ZnO-TiO2系介電陶瓷/NiZnCu鐵氧磁體疊層低溫共燒兼容特性研究,西北大學,博士論文,(2006)
[20] ]J. H. Nam, H. H. Jung, J. Y. Shin, et al,“The effect of Cu substitution on the electrical and magnetic properties of NiZn ferries,”IEEE. Trans. Magn., 31 [6] 3985-3987 (1995).
[21] J. Murbe, J. Topfer,“Ni-Cu-Zn Ferrites for low temperature firing Effects of powder morphology and Bi2O3 addition on microstructure and permeability,”J. Electroceram., 16 199-205 (2006).
[22] J. Murbe and J. Topfer, “Ni-Cu-Zn Ferrites for Low Temperature Firing: II. Effects of Powder Morphology and Bi2O3 Addition on Microstructure and Permeability,” J.Electroceram, 16 [3] 199-205 (2006).
[23] K. Sun, Z. W. Lan, Z. Yu, L. Z. Li, J. M. Huang and X. N. Zhao, “Grain Growth, Densification and Magnetic Properties of NiZn Ferrites with Bi2O3 Additive,” J.Phys .D-Applied Physics, 41 [23] 235002 (2008).
[24] S. F. Wang, Y. R. Wang, T. C. K. Yang, P. J. Wang and C. A. Lu, “Densification and Properties of Fluxed Sintered NiCuZn Ferrites,” J.Mag.Ma. Mater, 217[1-3] 35-43 (2000).
[25] J. Y. Hsu, W. S. Ko, H. D. Shen, C. J. Chen, “Low Temperature Fired NiCuZn Ferrite,” IEEE Trans. Mag, 30 [6] 4875-4877 (1994).
[26] J. H. Jean and C. H. Lee, “Low-fire NiO-CuO-ZnO Ferrite with Bi2O3,” Jap. J.Appl Phys Part 1-Regular Papers Short Notes & Review Papers, 38 [6A] 3508-3512 (1999).
[27] J. Y. Hsu, W. S. Ko, H. D. Shen, C. J. Chen, “Low-Temperature Fired NiCuZn Ferrite,” IEEE Trans Mag, 30(6), 4875-4877 (1994).
[28] 呂承翰,鐵氧磁體與低溫共燒陶瓷之燒結性質,台灣大學材料與工程學系研究所,碩士論文,(2008)
[29] 李岳翰,銀對鐵氧磁體及低溫陶瓷之共燒行為研究,台灣大學材料與工程學系研究所,碩士論文,(2010)
[30] 陳泰豪,「低溫共燒型介電-磁性陶瓷複合材料」,國立成功大學資源工程所碩士論文(2007) .
[31] M. Randall, “Liquid phase sintering,”New York (1985) .
[32] M. M. Costa, G. F. M. Pires Junior, A. S. B. Sombra., “Dielectric and impedance properties’ studies of the of lead doped (PbO)-Co2Y type hexaferrite Ba2Co2Fe12O22 (Co2Y),” Mater. Chem. Phys., 123, 35-39 (2010) .
[33] R. M. German, “Liquid phase sintering, ”Plenum Press, New York(1985).
[34] 楊朝偉,「巨磁阻鍶鐵鉬氧之鐵鉬價數探討及鍶鉬氧相殘留」,國立成功大學材料科學及工程研究所,碩士論文(2006) .
[35] 李廷濬,「氧化鉛-氧化銅玻璃添加劑對Co2Z 六方晶系鐵氧磁體燒結及磁性質影響之研究」,義守大學材料科學與工程研究所,碩士論文(2004) .
[36] S. H. Gee, Y. K. Hong, I. T. Nam, C. Weatherspoon, A. Lyle, and J. C. Sur,“Ba3Co0.8Zn1.2Fe24O41 (Co2Z-Type) Hexaferrite Particles for LTCC Substrates, ” IEEE Trans. Magn., 42, 2843-5(2006).
[37] X.H. Wang, T.L. Ren, L.T. Li, Z.L. Gui, S.Y. Su, Z.X. Yue, and J. Zhou,“Synthesis of Cu-modified Co2Z hexaferrite with planar structure by a citrateprecursor mothod, ” J. Magn. Magn. Mater., 234, 255-60(2001).
[38] P. Lubitz, “New substitution in the hexagonal ferrites to reduce anisotropy without using Co, ” J. Appl. Phys., 87, 4978~80(2000) .
[39] 康閎竣,「超薄Co膜成長於Pt(111)之表面與磁性的研究」,國立中山大學物理研究所,碩士論文(2007) .
[40] 鄭振東,「實用磁性材料」,全華科技圖書,pp. 2-24~2-28.
[41] 王鐘慶,添加氧化鋯(ZrO2)對合成K2O-CaO-MgO-Al2O3-SiO2玻璃陶瓷之結晶行為、介電性質及機械性質之影響,成功大學資源工程研究所,碩士論文,(2011)
[42] 王鐘慶,添加氧化鋯(ZrO2)對合成K2O-CaO-MgO-Al2O3-SiO2玻璃陶瓷之結晶行為、介電性質及機械性質之影響,成功大學資源工程研究所,碩士論文,(2011)
[43] 王郁茹,銀電極與玻璃陶瓷之介面反應研究,台灣大學材料與工程學系研究所,碩士論文,(2005)
[44] R. Eitel, A. Baker, J. Agraz, M. Lanagan, et al , “On-board fiber alignment in LTCC optoelectronic packages,” ACerS/IMAPS 1st International Conference and Exhibition on CICMT (2005).
[45] 葉信賢,基層陶瓷可靠度技術,工業材料雜誌,192期,144-152,(2002)
[46] T. Cheng, and R. Raj,“Flaw generation during constrained sintering of metal-ceramic and metal-glass multilayer,”J. Am. Ceram. Soc., 72 1649 (1989).
[47] O. Guillon, S. Kraub, J.R. Odel,“Influence of thickness on the constrained sintering of alumina films ,”J. Europ. Ceram. Soc., 27 2623 (2007).
[48] Y. J. Choi, J. H. Park, W. J. Ko, I. S. Hwang, S. Nahm,“Co-firing and shrinkage matching in low- and middle- permittivity dielectric compositions for a low-temperature co-fired ceramics system,”J. Am. Ceram. Soc., 89 [2] 562-567 (2006).
[49] 林詠強,「束縛燒結的機制與應力研究」,國立清華大學材料科學與工程研究所,碩士論文(2001) .
[50] C.-H. L. Jau-Ho JEAN “Low-Fire NiO-CuO-ZnO Ferrite with Bi2O3” Jpn.J.Appl.Phys., 38 3508-12 (1999).
[51] J.-H. L. Jean, Cheng-Horng, “Low-Fire NiCuZn Ferrite with Bi2O3 ” Jpn.J.Appl.Phys, 38[6A] 3508, (1999).
[52] J. Mürbe, J. Töpfer, “Ni-Cu-Zn ferrites for low temperature firing: II. Effects of powder morphology and Bi2O3 addition on microstructure and permeability”J. Electroceram, 15 215-221, (2005)
[53] M.P. Kulakov, D.Ya. Lenchinenko, “Thermochimica Acta, Thermodynamic stabilities of ternary oxides in Bi-Cu system by solid electrolyte EMF method” 188 129-133, (1991)
[54] R. A. Robie, B.H.a.J.R.F., “Thermodynamic Properties of Minerals and Related Substances” (1979).
[55] A. Barba, C. Clausell, J. C. Jarque, M. Monzó, “Effects of Partial Replacement of Iron with Tungsten on Microstructure, Electrical, Magnetic and Humidity Properties of Copper-Zinc Ferrite Material”
[56] J. Eur. Ceram. Soc. 31, 2119-2128 (2011).
[57] M. Fujimoto, “The International Journal of Microcircuits and Electronic Packaging” J. Am. Ceram. Soc. 77 2873-2878, (1994)
[58] M.T. Johnson and E.G. Visser, “Modern Ferrite Technology” IEEE Trans. Magn. 26, 1987-1989 (1990).