簡易檢索 / 詳目顯示

研究生: 王永耀
Wang, Yung-Yao
論文名稱: 機率化微機電結構疲勞測試之概念性設計
Conceptual Design of Probabilistic Fatigue Test for Reliability Evaluation of MEMS Structures
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 161
中文關鍵詞: 多晶矽疲勞微機電
外文關鍵詞: Weibull statistics, Fatigue, CARES/LIFE, MEMS, Weibull, Electrostatic actuation
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來微機電技術已逐漸發展成熟,其商品及功能需求也漸漸邁向多元化,其中可動元件在微機電結構裡扮演了極重要的角色,舉凡微機電感測器及致動器大部分均含有可動結構,且均須被長期的反覆使用,在這種情形下,結構便會產生疲勞現象,而由於製程的不確定性,造成微機電結構的材料特性會隨著不同批次的製程而改變,尤其以微機電結構的疲勞現象最為顯著,以多晶矽材料而言,其疲勞壽命的實驗結果有數十秒到數十天的差距,材料特性測試的最終目的是為了能提供結構設計者作為結構設計上的參考,對於這樣分散的實驗結果並無法提供結構設計者一個衡量的標準,有鑑於此,本文的研究目的即在於對疲勞實驗的結果引入機率化的特性,以提供結構設計者一套衡量材料特性的方法,本文以大量的多晶矽微懸浮結構進行疲勞實驗,以符合結構機率化的精神,並為了能方便的觀察及統計實驗結果,本文設計了一套新的疲勞實驗方法,實驗結果則以Weibull 機率分佈來描述,並引入NASA –CARES/LIFE 可靠度分析程式裡所運用的理論,提供了一套疲勞實驗簡化的模型,以減少長時間的疲勞實驗因外在實驗環境的改變而影響實驗結果。

     With the rapid growth of microelectromechanical systems (MEMS),many micro actuators and sensors, such as valves, pumps, accelerometers, and pressure transducers, have been developed and utilized in industrial applications. These devices are all subjected to cyclic loading during service and therefore their long term reliability due to fatigue is a significant concern. Due to the probabilistic nature of micro flaw distribution and further imposed by the limitation on the resolution of available instruments for crack growth detection, the conventional fatigue properties characterization methods may not yield a practical results for subsequent structure design. This thesis presents two major issues: First, a novel methodology for structural reliability assessment is presented. Based on the probabilistic nature of brittle materials,this method integrates the scholastic material strength with fatigue crack extension rules such as Walker’s or Paris laws to forecast the residual strength of MEMS structures after a certain period of service and thus it provides the necessary information for structural design. Second, specimens for fatigue properties characterization are designed and fabricated. An array of bothfixed-fixed and cantilever beams is designed in order to capture the nature of probabilistic fatigue parameters of polysilicons and provides necessary material parameters for the proposed design flow. The fabrication of these specimens are carried in National Nano-Device Laboratory (NDL) and Center
    for Micro/Nano Technology (MINA) at NCKU. Although the initial fabrication and test results for these specimens cannot yield a satisfied result,the experience and lessen learned form this work is certainly invaluable for the subsequent design modification and optimization. By the approach proposed by this work, a more reasonable structural reliability evaluation methodology could be established for enhancing the robustness for MEMS structures.

    摘要……………………………………………………………………………I Abstract………………………………………………………………………II 致謝……………………………………………………………………………III 目錄……………………………………………………………………………IV 圖目錄…………………………………………………………………………VIII 表目錄…………………………………………………………………………XIII 符號說明………………………………………………………………………XIV 第一章緒論……………………………………………………………………1 1.1 前言………………………………………………………………………1 1.2 結構疲勞…………………………………………………………………2 1.3 結構破壞機率化…………………………………………………………6 1.4 研究動機…………………………………………………………………7 1.5 本文架構…………………………………………………………………8 第二章基本理論簡介…………………………………………………………10 2.1 破壞力學簡介……………………………………………………………11 2.1.1 應力強度因子…………………………………………………………13 2.2 疲勞現象簡介……………………………………………………………15 2.2.1 疲勞破壞的特徵………………………………………………………17 2.2.2 裂縫成長定律…………………………………………………………20 2.3 平行靜電板理論…………………………………………………………21 2.4 樑結構變形理論…………………………………………………………24 2.4.1 應力集中因子…………………………………………………………28 2.5 本章結論…………………………………………………………………30 第三章機率化結構失效模型…………………………………………………31 3.1 前言………………………………………………………………………31 3.2 統計機率分佈函數………………………………………………………35 3.2.1 Gamma 分佈函數………………………………………………………36 3.2.2 指數分佈函數…………………………………………………………38 3.2.3 Weibull 分佈函數……………………………………………………38 3.3 Weibull 分佈函數在工程上的應用……………………………………41 3.4 疲勞實驗簡化模型………………………………………………………46 3.4.1 隨時間而變的應力……………………………………………………47 3.4.2 循環應力疲勞破壞等效成靜態應力疲勞破壞………………………51 3.4.3 靜態應力疲勞破壞等效成瞬間破壞…………………………………54 3.5 本章結論…………………………………………………………………56 第四章微結構設計……………………………………………………………58 4.1 材料的選擇與結構初步設計……………………………………………58 4.2 測試結構運動方式的改良設計…………………………………………61 4.2.1 上層電極板的設計……………………………………………………63 4.3 結構幾何尺寸設計………………………………………………………66 4.3.1 微樑結構的自然頻率…………………………………………………69 4.4 微樑結構在晶片上的配置………………………………………………71 4.5 本章結論…………………………………………………………………78 第五章微結構製作……………………………………………………………79 5.1 試片製作流程……………………………………………………………79 5.2 製作犧牲層………………………………………………………………81 5.2.1 清洗晶圓………………………………………………………………82 5.2.2 沈積絕緣層及犧牲層…………………………………………………84 5.2.3 定義結構固定端………………………………………………………87 5.3 製作結構層………………………………………………………………91 5.4 晶片切割與結構釋放……………………………………………………94 5.4.1 晶片切割………………………………………………………………94 5.4.2 結構釋放………………………………………………………………96 5.5 本章結論…………………………………………………………………100 第六章實驗系統設計…………………………………………………………101 6.1 上層電極板的設計製作…………………………………………………101 6.2 機械夾具的設計製作……………………………………………………108 6.3 實驗儀器組裝及各儀器功能……………………………………………117 6.4 本章結論…………………………………………………………………121 第七章研究現況及改善方式…………………………………………………123 7.1 實驗進行方式及實驗初步成果…………………………………………123 7.2 實驗數據分析……………………………………………………………133 7.3 研究現況…………………………………………………………………137 7.3.1 試片現況及改進方式…………………………………………………137 7.3.2 實驗週邊現況及改進方式……………………………………………143 7.4 本章結論…………………………………………………………………145 第八章結論與未來展望………………………………………………………146 8.1 本文歸納…………………………………………………………………146 8.2 本文結論…………………………………………………………………147 8.3 本文貢獻…………………………………………………………………148 8.4 未來工作與展望…………………………………………………………150 參考文獻………………………………………………………………………153 附錄一各種應力型態所對應的g 函數………………………………………158 附錄二結構編碼對應表………………………………………………………160

    [1] C. T. Gibson, B. L. Weeks, C. Abell, “Calibration of AFM Cantilever Spring Constants”, Ultramicroscopy, Vol. 97, pp.113-118, 2003
    [2] E. Thielicke, E. Obermeier, “Microactuators and Their Technologies”,
    Mechatronics, Vol. 10, pp.431-455, 2000
    [3] H. Tai-Ran, MEMS&MICROSYSTEMS Design and Manufacture,
    McGraw-Hill Companies, 2003
    [4] R. T. Chen, H. Nguyen, M. C. Wu, “A High-Speed Low-Voltage
    Stress-Induced Micromachined 2*2 Optical Switch”, IEEE Photonics
    Technology, Vol. 11, pp. 1396-1398, 1999
    [5] I. Schiele, J. Huber, B. Hillerich, F. Kozlowski, “Surface-Micromachined
    Electrostatic Microrelay”, Sensors and Actuators A, Vol. 66, pp. 345-354,
    [6] H. O. Fuchs, R. I. Stephens, Metal Fatigue in Engineering, John
    Wiley&Sons, New York, 1980.
    [7] T. Ando, M. Shikida, K. Sato, “Tensile-Mode Fatigue Testing of Silicon
    Films as Structural Materials for MEMS”, Sensors and Actuators A, Vol.
    [8] C. L. Muhlstein, S. B. Brown, and R. O. Ritchie, “High-Cycle Fatigue of
    Single-Crystal Silicon Thin Films”, Journal of Microelectromechanal
    Systems, Vol. 10, No. 4, pp. 593-600, 2001.
    [9] R. Schwaiger, O. Kraft, “Size Effect in the Fatigue Behavior of Thin Ag
    Films”, Acta Materialia, No. 51, pp. 195-206, 2003.
    [10] X. D. Li, B. Bhushan, “Fatigue Studies of Nanoscale Structure for
    MEMS/NEMS Applications Using Nanoindentation Techniques”,
    Surface and Coatings Technology, Vol. 163-164, pp. 521-526, 2003.
    [11] W. Weibull , ”Statistical Distribution function of Wide applicability“ ,
    Journal of Apply Mechanics, pp.293~297, 1951
    [12] C. J. Wilson, A. Ormeggi, M. Narbutovskih, “Fracture Testing of Silicon
    Microcantilever Beams”, Journal of Applied Physics, Vol. 79(5), pp.
    [13] T. Hiroshi, C. P. Paul, R. I. George, The Stress Analysis of Cracks
    Handbook, Third Edition, 2000
    [14] C. U. Ansel, K. F. Saul, Advance strength and applied elasticity 4th,
    Prentice Hall
    [15] J. Schijve, M. Skorupa, A. Skorupa, T. Machniewicz, P. Gruszczynski,
    “Fatigue crack growth in the aluminium alloy D16 under constantand
    variable amplitude loading”, International Journal of Fatigue,Vol. 26, pp.
    1–15, 2004,
    [16] R. E. Peterson, Stress Concentration Factors, John Wiley & Sons, 1974
    [17] E. E. Gdoutos, Fracture Mechanics, Kluwer Academic, 1993
    [18] P. Paris and F. Erdogan, “A critical analysis of crack propagation laws”,Journal of Basic Engineering, Trans. ASME, Vol. 85, pp. 528~534, 1963
    [19] P. Dimitrios, P. P. Sergio, S. Kamal, P. B. K. Linda, IEEE Trans.
    Microwave Theory and Techniques, Vol. 51, pp. 259, 2003.
    [20] E. P. Kurt, “Dynamic Micromechanics on Silicon : Techniques and
    Devices”, IEEE Trans Electron Dev., ED-25, pp. 1241-1250, 1978.
    [21] C. L. Muhlsteina, R.T. Howeb, and R.O. Ritchiea, “Fatigue of
    polycrystalline silicon for MEMS applications: crack growth and
    stability under resonant loading conditions” Mechanic of Materials, pp.
    1-32, 2001
    [22] K-S Chen, K-S Ou and L-M Li, “Development and accuracy assessment
    of simplified electromechanical coupling solvers for MEMS
    applications” Journal of Micromechanics and Microengineering, Vol. 14,
    pp. 159–169, 2004
    [23] 林逸群, 靜電驅動之微懸臂樑疲勞特性研究, 清大碩士論文, 2004
    [24] J. Connally and S. Brown, “Micromechanical Fatigue Testing,”,
    Experimental Mechanics, pp.81-90, 1993.
    [25] J. Connally and S. Brown, “Slow Crack Growth in Single Crystal
    Silicon,” Science, Vol. 256, pp.1537-1539, 1992
    [26] J. A. Connally, Micromechanical Fatigue Testing, Ph.D. Thesis,
    Massachusetts Institute of Technology, 1992.
    [27] S.M. Wiederhorn, “Subcritical Crack Growth in Ceramics,” Fracture
    Mechanics of Ceramics, Vol. 2, pp.613-646, 1974,
    [28] W.W. Van Arsdell and S. Brown, “Subcritical crack growth in silicon
    MEMS”, Journal of MEMS, Vol. 8, pp. 319-327, 1999
    [29] J. Koskinen, E. Steinwall, R. Soave, and H. Johnson, “Microtensile
    Testing of Free-Standing Polysilicon Fibers of Various Grain Sizes”,
    Journal of Micromechanics and Microengineering, Vol. 35, pp. 13-17,
    1993
    [30] W. N. Sharpe Jr., “Measurements of Young’s modulus, Poisson’s Ratio,
    and Tensile Strength of Polysilicon”, Proc. MEMS 97-10th IEEE
    International Workshop on Microelectromechanical Systems, Nagoya,
    Japan, pp.424-429, 1997.
    [31] S. Greek and F. Ericson, “Young’s Modulus, Yield Strength and Fracture
    Strength of Microelements Determined by Tensile Testing”,
    Microelectromechan. Structures for Mat. Res. Soc., Vol. 518, pp.51-56,
    1998
    [32] W. N. Sharpe Jr., K. T. Turner, and R. L. Edwards, “Polysilicon Tensile
    Testing with Electrostatic Gripping,” Microelectromechan. Structures for
    Mat. Res. Soc., Vol. 518, pp.191-196, 1998.
    [33] D. Lavan, T. E. Buchheit, “Testing of Critical Features of Polysilicon
    MEMS”, Materials Science of Microelectromechanical Systems Devices
    II: Presented at Materials Research Society, Boston, 1999
    [34] W. N. Sharpe Jr., K. T. Turner, and R. L. Edwards, “Tensile Testing of
    Polyslicon”, Exper. Mech., Vol.39, No.3, pp.162-170, 1999
    [35] I. Chasiotis and W. G. Knauss, “Instrumentation Requirements in
    Mechanical Testing for MEMS Materials”, Proc. Microscale Systems:
    Mechanics and Measurements Symposium 2000, pp.56-61, 2000.
    [36] W. N. Sharp Jr. and K. Jackson, “Tensile testing of MEMS materials”,
    Proc. Microscale System: Mechanics and Measurements Symposium
    2000, pp.ix-xiv, 2000
    [37] 歐廣順, 微機電機率化結構設計分析與材料測試強度整合之研究,
    國立成功大學機械工程學系, 碩士論文, 2003
    [38] C. Alberto, D. M. Biagio, F. Attilio, C. Claudia, V. Alberto, and M.
    Mauro, “Mechanical Characterization of Polysilicon Through On-Chip
    Tensile Tests”, Journal of Microelectromechamical Systems, Vol. 13, No.
    2, pp. 200~219, 2004
    [39] W. Weibull , ”Statistical Distribution function of Wide applicability“ ,
    Journal of Apply Mechanics, pp.293~297, 1951
    [40] T. Tsuchiya, “Specimen size effect on tensile strength of
    surface-micromachined polycrystalline silicon thin films”, Journal of
    Microelectromechanical Systems, Vol. 7, pp. 106–113, 1998.
    [41] D. A. Lavan, T. Tsuchiya, and G. Coles, “Cross Comparison of Direct
    Tensile Testing Techniques on SUMMiT Polysilicon Films”, Mechanical
    Properties of Structural Films, ASTM STP 1413, in press, 2001.
    [42] B. Jorg, N. S. William, J. Osama, “Fracture Strength of Polysilicon at
    Stress Concentrations“, Journal of Microelectromechanical Systems, Vol.
    12, No. 3, 2003
    [43] N. N. Noel, M. P. Lynn, A. J. Lesley, P. G. John, Ceramics Analysis and
    Reliability Evaluation of Structures Life Prediction Program, User and
    Programmers Manual, NASA-Lewis Research Center, 1993
    [44] C. Y. Waren, Roark’s Formulas for Stress and Strain, Sixth Edition,
    McGraw-Hill Book Company.
    [45] J. P. Ryszard, P. B. Maarten, and C. B. Gordon, “Advances in optical
    methodology for studies of dynamic characteristics of MEMS
    microengines rotating at high speeds”, Proc. IX Internat. Congress on
    Exp. Mech., SEM, Bethel, CT, pp. 1009-1012
    [46] D. L. Steven and T. S. Daniel, “In-situfabrication of sacrificial layers in electrodeposited NiFe microstructures”, Journal of Micromechanics and
    Microengineering, Vol. 9, pp. 97–104, 1999
    [47] M. Mehran, D. S. Stephen, and H. L. Jeftrey, “Measurement of Wear in
    Poly silicon Micromotors”, IEEE Transactions On Electron Devices, Vol.
    39, No. 5, pp.1136, 1992
    [48] B. Wagner, M. Kreutzer, and W. Benecke, “Permanent Magnet
    Micromotors on Silicon Substrates”, Journal of Microelectromechanical
    Systems, Vol. 2, No. 1, pp. 23, 1993
    [49] A. P. Bruce, W. S. Robert, L. M. Karren and F. T. Peter, “Materials
    Selection for High Temperature (750°-1000°C) Metallic Recuperators
    for Improved Efficiency Microturbines”, Oak Ridge National
    Laboratory Metals and Ceramics Division
    [50] Y. Zhu, K. Tomsovic, “Development of models for analyzing the
    load-following performance of microturbines and fuel cells”, Electric
    Power Systems Research, Vol. 62, pp. 1-11, 2002
    [51] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk Micromachining
    of Silicon”, Proceedings of the IEEE, Vol. 86, No. 8, 1998.
    [52] K. E. Petersen, “Silicon as a Mechanical Material”, Proceedings of the
    IEEE, Vol. 70, No. 5, pp. 420-457, 1982.
    [53] R. L. Alley, R. T. Howe and K. Komvopoulos, “The Effect of
    Release-Etch Processing on Surface Microstructure Stiction”,
    International Conference on Solid State Sensor and Actuator Workshop,
    pp. 202-207, 1992.
    [54] L. Yong-Il, P. Kyung-Ho , L. Jonghyun , L. Chun-Su , Y. H. Joun ,
    Chang-Jin (CJ) Kim, and Y. Yong-San, “Dry Release for Surface
    Micromachining with HF Vapor-Phase Etching”, Journal of
    Microelectromechanical Systems , Vol. 6, No. 3, pp. 226, 1997
    [55] C. L. Muhlstein, R. T. Howe, R. O. Ritchie, “Fatigue of polycrystalline
    silicon for MEMS application: crack growth and stability under resonant
    loading conditions”, Mechanics of Materials, 2003
    [56] J. Connally and S. Brown, “Micromechanical Fatigue Testing”,
    Experimental Mechanics, pp.81-90, 1993,.
    [57] J. Connally and S. Brown, “Slow Crack Growth in Single Crystal
    Silicon”, Science, Vol. 256, pp.1537-1539, 1992
    [58] J. A. Connally, Micromechanical Fatigue Testing, Ph.D. Thesis,
    Massachusetts Institute of Technology, 1992.
    [59] S.M. Wiederhorn, “Subcritical Crack Growth in Ceramics,” Fracture
    Mechanics of Ceramics, Vol. 2, pp. 613-646, 1974,
    [60] W.W. Van Arsdell and S. Brown, Journal of Microelectromechanical
    Systems, Vol. 8, pp. 319-327,1999
    [61] K-S Chen, K-S Ou, L-M Li, “Development and accuracy assessment of
    simplified electromechanical coupling solvers for MEMS applications”,
    Journal of Micromechanics and Microengineering, Vol. 14, pp. 159–169,
    2004

    下載圖示 校內:立即公開
    校外:2005-07-25公開
    QR CODE