| 研究生: |
王永耀 Wang, Yung-Yao |
|---|---|
| 論文名稱: |
機率化微機電結構疲勞測試之概念性設計 Conceptual Design of Probabilistic Fatigue Test for Reliability Evaluation of MEMS Structures |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 微機電系統工程研究所 Institute of Micro-Electro-Mechancial-System Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 多晶矽 、疲勞 、微機電 |
| 外文關鍵詞: | Weibull statistics, Fatigue, CARES/LIFE, MEMS, Weibull, Electrostatic actuation |
| 相關次數: | 點閱:76 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來微機電技術已逐漸發展成熟,其商品及功能需求也漸漸邁向多元化,其中可動元件在微機電結構裡扮演了極重要的角色,舉凡微機電感測器及致動器大部分均含有可動結構,且均須被長期的反覆使用,在這種情形下,結構便會產生疲勞現象,而由於製程的不確定性,造成微機電結構的材料特性會隨著不同批次的製程而改變,尤其以微機電結構的疲勞現象最為顯著,以多晶矽材料而言,其疲勞壽命的實驗結果有數十秒到數十天的差距,材料特性測試的最終目的是為了能提供結構設計者作為結構設計上的參考,對於這樣分散的實驗結果並無法提供結構設計者一個衡量的標準,有鑑於此,本文的研究目的即在於對疲勞實驗的結果引入機率化的特性,以提供結構設計者一套衡量材料特性的方法,本文以大量的多晶矽微懸浮結構進行疲勞實驗,以符合結構機率化的精神,並為了能方便的觀察及統計實驗結果,本文設計了一套新的疲勞實驗方法,實驗結果則以Weibull 機率分佈來描述,並引入NASA –CARES/LIFE 可靠度分析程式裡所運用的理論,提供了一套疲勞實驗簡化的模型,以減少長時間的疲勞實驗因外在實驗環境的改變而影響實驗結果。
With the rapid growth of microelectromechanical systems (MEMS),many micro actuators and sensors, such as valves, pumps, accelerometers, and pressure transducers, have been developed and utilized in industrial applications. These devices are all subjected to cyclic loading during service and therefore their long term reliability due to fatigue is a significant concern. Due to the probabilistic nature of micro flaw distribution and further imposed by the limitation on the resolution of available instruments for crack growth detection, the conventional fatigue properties characterization methods may not yield a practical results for subsequent structure design. This thesis presents two major issues: First, a novel methodology for structural reliability assessment is presented. Based on the probabilistic nature of brittle materials,this method integrates the scholastic material strength with fatigue crack extension rules such as Walker’s or Paris laws to forecast the residual strength of MEMS structures after a certain period of service and thus it provides the necessary information for structural design. Second, specimens for fatigue properties characterization are designed and fabricated. An array of bothfixed-fixed and cantilever beams is designed in order to capture the nature of probabilistic fatigue parameters of polysilicons and provides necessary material parameters for the proposed design flow. The fabrication of these specimens are carried in National Nano-Device Laboratory (NDL) and Center
for Micro/Nano Technology (MINA) at NCKU. Although the initial fabrication and test results for these specimens cannot yield a satisfied result,the experience and lessen learned form this work is certainly invaluable for the subsequent design modification and optimization. By the approach proposed by this work, a more reasonable structural reliability evaluation methodology could be established for enhancing the robustness for MEMS structures.
[1] C. T. Gibson, B. L. Weeks, C. Abell, “Calibration of AFM Cantilever Spring Constants”, Ultramicroscopy, Vol. 97, pp.113-118, 2003
[2] E. Thielicke, E. Obermeier, “Microactuators and Their Technologies”,
Mechatronics, Vol. 10, pp.431-455, 2000
[3] H. Tai-Ran, MEMS&MICROSYSTEMS Design and Manufacture,
McGraw-Hill Companies, 2003
[4] R. T. Chen, H. Nguyen, M. C. Wu, “A High-Speed Low-Voltage
Stress-Induced Micromachined 2*2 Optical Switch”, IEEE Photonics
Technology, Vol. 11, pp. 1396-1398, 1999
[5] I. Schiele, J. Huber, B. Hillerich, F. Kozlowski, “Surface-Micromachined
Electrostatic Microrelay”, Sensors and Actuators A, Vol. 66, pp. 345-354,
[6] H. O. Fuchs, R. I. Stephens, Metal Fatigue in Engineering, John
Wiley&Sons, New York, 1980.
[7] T. Ando, M. Shikida, K. Sato, “Tensile-Mode Fatigue Testing of Silicon
Films as Structural Materials for MEMS”, Sensors and Actuators A, Vol.
[8] C. L. Muhlstein, S. B. Brown, and R. O. Ritchie, “High-Cycle Fatigue of
Single-Crystal Silicon Thin Films”, Journal of Microelectromechanal
Systems, Vol. 10, No. 4, pp. 593-600, 2001.
[9] R. Schwaiger, O. Kraft, “Size Effect in the Fatigue Behavior of Thin Ag
Films”, Acta Materialia, No. 51, pp. 195-206, 2003.
[10] X. D. Li, B. Bhushan, “Fatigue Studies of Nanoscale Structure for
MEMS/NEMS Applications Using Nanoindentation Techniques”,
Surface and Coatings Technology, Vol. 163-164, pp. 521-526, 2003.
[11] W. Weibull , ”Statistical Distribution function of Wide applicability“ ,
Journal of Apply Mechanics, pp.293~297, 1951
[12] C. J. Wilson, A. Ormeggi, M. Narbutovskih, “Fracture Testing of Silicon
Microcantilever Beams”, Journal of Applied Physics, Vol. 79(5), pp.
[13] T. Hiroshi, C. P. Paul, R. I. George, The Stress Analysis of Cracks
Handbook, Third Edition, 2000
[14] C. U. Ansel, K. F. Saul, Advance strength and applied elasticity 4th,
Prentice Hall
[15] J. Schijve, M. Skorupa, A. Skorupa, T. Machniewicz, P. Gruszczynski,
“Fatigue crack growth in the aluminium alloy D16 under constantand
variable amplitude loading”, International Journal of Fatigue,Vol. 26, pp.
1–15, 2004,
[16] R. E. Peterson, Stress Concentration Factors, John Wiley & Sons, 1974
[17] E. E. Gdoutos, Fracture Mechanics, Kluwer Academic, 1993
[18] P. Paris and F. Erdogan, “A critical analysis of crack propagation laws”,Journal of Basic Engineering, Trans. ASME, Vol. 85, pp. 528~534, 1963
[19] P. Dimitrios, P. P. Sergio, S. Kamal, P. B. K. Linda, IEEE Trans.
Microwave Theory and Techniques, Vol. 51, pp. 259, 2003.
[20] E. P. Kurt, “Dynamic Micromechanics on Silicon : Techniques and
Devices”, IEEE Trans Electron Dev., ED-25, pp. 1241-1250, 1978.
[21] C. L. Muhlsteina, R.T. Howeb, and R.O. Ritchiea, “Fatigue of
polycrystalline silicon for MEMS applications: crack growth and
stability under resonant loading conditions” Mechanic of Materials, pp.
1-32, 2001
[22] K-S Chen, K-S Ou and L-M Li, “Development and accuracy assessment
of simplified electromechanical coupling solvers for MEMS
applications” Journal of Micromechanics and Microengineering, Vol. 14,
pp. 159–169, 2004
[23] 林逸群, 靜電驅動之微懸臂樑疲勞特性研究, 清大碩士論文, 2004
[24] J. Connally and S. Brown, “Micromechanical Fatigue Testing,”,
Experimental Mechanics, pp.81-90, 1993.
[25] J. Connally and S. Brown, “Slow Crack Growth in Single Crystal
Silicon,” Science, Vol. 256, pp.1537-1539, 1992
[26] J. A. Connally, Micromechanical Fatigue Testing, Ph.D. Thesis,
Massachusetts Institute of Technology, 1992.
[27] S.M. Wiederhorn, “Subcritical Crack Growth in Ceramics,” Fracture
Mechanics of Ceramics, Vol. 2, pp.613-646, 1974,
[28] W.W. Van Arsdell and S. Brown, “Subcritical crack growth in silicon
MEMS”, Journal of MEMS, Vol. 8, pp. 319-327, 1999
[29] J. Koskinen, E. Steinwall, R. Soave, and H. Johnson, “Microtensile
Testing of Free-Standing Polysilicon Fibers of Various Grain Sizes”,
Journal of Micromechanics and Microengineering, Vol. 35, pp. 13-17,
1993
[30] W. N. Sharpe Jr., “Measurements of Young’s modulus, Poisson’s Ratio,
and Tensile Strength of Polysilicon”, Proc. MEMS 97-10th IEEE
International Workshop on Microelectromechanical Systems, Nagoya,
Japan, pp.424-429, 1997.
[31] S. Greek and F. Ericson, “Young’s Modulus, Yield Strength and Fracture
Strength of Microelements Determined by Tensile Testing”,
Microelectromechan. Structures for Mat. Res. Soc., Vol. 518, pp.51-56,
1998
[32] W. N. Sharpe Jr., K. T. Turner, and R. L. Edwards, “Polysilicon Tensile
Testing with Electrostatic Gripping,” Microelectromechan. Structures for
Mat. Res. Soc., Vol. 518, pp.191-196, 1998.
[33] D. Lavan, T. E. Buchheit, “Testing of Critical Features of Polysilicon
MEMS”, Materials Science of Microelectromechanical Systems Devices
II: Presented at Materials Research Society, Boston, 1999
[34] W. N. Sharpe Jr., K. T. Turner, and R. L. Edwards, “Tensile Testing of
Polyslicon”, Exper. Mech., Vol.39, No.3, pp.162-170, 1999
[35] I. Chasiotis and W. G. Knauss, “Instrumentation Requirements in
Mechanical Testing for MEMS Materials”, Proc. Microscale Systems:
Mechanics and Measurements Symposium 2000, pp.56-61, 2000.
[36] W. N. Sharp Jr. and K. Jackson, “Tensile testing of MEMS materials”,
Proc. Microscale System: Mechanics and Measurements Symposium
2000, pp.ix-xiv, 2000
[37] 歐廣順, 微機電機率化結構設計分析與材料測試強度整合之研究,
國立成功大學機械工程學系, 碩士論文, 2003
[38] C. Alberto, D. M. Biagio, F. Attilio, C. Claudia, V. Alberto, and M.
Mauro, “Mechanical Characterization of Polysilicon Through On-Chip
Tensile Tests”, Journal of Microelectromechamical Systems, Vol. 13, No.
2, pp. 200~219, 2004
[39] W. Weibull , ”Statistical Distribution function of Wide applicability“ ,
Journal of Apply Mechanics, pp.293~297, 1951
[40] T. Tsuchiya, “Specimen size effect on tensile strength of
surface-micromachined polycrystalline silicon thin films”, Journal of
Microelectromechanical Systems, Vol. 7, pp. 106–113, 1998.
[41] D. A. Lavan, T. Tsuchiya, and G. Coles, “Cross Comparison of Direct
Tensile Testing Techniques on SUMMiT Polysilicon Films”, Mechanical
Properties of Structural Films, ASTM STP 1413, in press, 2001.
[42] B. Jorg, N. S. William, J. Osama, “Fracture Strength of Polysilicon at
Stress Concentrations“, Journal of Microelectromechanical Systems, Vol.
12, No. 3, 2003
[43] N. N. Noel, M. P. Lynn, A. J. Lesley, P. G. John, Ceramics Analysis and
Reliability Evaluation of Structures Life Prediction Program, User and
Programmers Manual, NASA-Lewis Research Center, 1993
[44] C. Y. Waren, Roark’s Formulas for Stress and Strain, Sixth Edition,
McGraw-Hill Book Company.
[45] J. P. Ryszard, P. B. Maarten, and C. B. Gordon, “Advances in optical
methodology for studies of dynamic characteristics of MEMS
microengines rotating at high speeds”, Proc. IX Internat. Congress on
Exp. Mech., SEM, Bethel, CT, pp. 1009-1012
[46] D. L. Steven and T. S. Daniel, “In-situfabrication of sacrificial layers in electrodeposited NiFe microstructures”, Journal of Micromechanics and
Microengineering, Vol. 9, pp. 97–104, 1999
[47] M. Mehran, D. S. Stephen, and H. L. Jeftrey, “Measurement of Wear in
Poly silicon Micromotors”, IEEE Transactions On Electron Devices, Vol.
39, No. 5, pp.1136, 1992
[48] B. Wagner, M. Kreutzer, and W. Benecke, “Permanent Magnet
Micromotors on Silicon Substrates”, Journal of Microelectromechanical
Systems, Vol. 2, No. 1, pp. 23, 1993
[49] A. P. Bruce, W. S. Robert, L. M. Karren and F. T. Peter, “Materials
Selection for High Temperature (750°-1000°C) Metallic Recuperators
for Improved Efficiency Microturbines”, Oak Ridge National
Laboratory Metals and Ceramics Division
[50] Y. Zhu, K. Tomsovic, “Development of models for analyzing the
load-following performance of microturbines and fuel cells”, Electric
Power Systems Research, Vol. 62, pp. 1-11, 2002
[51] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk Micromachining
of Silicon”, Proceedings of the IEEE, Vol. 86, No. 8, 1998.
[52] K. E. Petersen, “Silicon as a Mechanical Material”, Proceedings of the
IEEE, Vol. 70, No. 5, pp. 420-457, 1982.
[53] R. L. Alley, R. T. Howe and K. Komvopoulos, “The Effect of
Release-Etch Processing on Surface Microstructure Stiction”,
International Conference on Solid State Sensor and Actuator Workshop,
pp. 202-207, 1992.
[54] L. Yong-Il, P. Kyung-Ho , L. Jonghyun , L. Chun-Su , Y. H. Joun ,
Chang-Jin (CJ) Kim, and Y. Yong-San, “Dry Release for Surface
Micromachining with HF Vapor-Phase Etching”, Journal of
Microelectromechanical Systems , Vol. 6, No. 3, pp. 226, 1997
[55] C. L. Muhlstein, R. T. Howe, R. O. Ritchie, “Fatigue of polycrystalline
silicon for MEMS application: crack growth and stability under resonant
loading conditions”, Mechanics of Materials, 2003
[56] J. Connally and S. Brown, “Micromechanical Fatigue Testing”,
Experimental Mechanics, pp.81-90, 1993,.
[57] J. Connally and S. Brown, “Slow Crack Growth in Single Crystal
Silicon”, Science, Vol. 256, pp.1537-1539, 1992
[58] J. A. Connally, Micromechanical Fatigue Testing, Ph.D. Thesis,
Massachusetts Institute of Technology, 1992.
[59] S.M. Wiederhorn, “Subcritical Crack Growth in Ceramics,” Fracture
Mechanics of Ceramics, Vol. 2, pp. 613-646, 1974,
[60] W.W. Van Arsdell and S. Brown, Journal of Microelectromechanical
Systems, Vol. 8, pp. 319-327,1999
[61] K-S Chen, K-S Ou, L-M Li, “Development and accuracy assessment of
simplified electromechanical coupling solvers for MEMS applications”,
Journal of Micromechanics and Microengineering, Vol. 14, pp. 159–169,
2004