| 研究生: |
林欣蓉 Lin, Hsin-Jung |
|---|---|
| 論文名稱: |
時變性彈簧邊界之樑的振動分析 Vibration of a Beam with Time Dependent Spring Support at One End |
| 指導教授: |
李森墉
Lee, Sen-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 動態 、時變性邊界 、樑 、移位函數 |
| 外文關鍵詞: | dynamic, time-dependent boundary condition, beam, shifting function method |
| 相關次數: | 點閱:121 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討樑結構受到函數型時變性彈簧邊界拘束的振動問題。對於線性邊界問題,可使用移位函數法(Shifting function method)將邊界作移位,使系統簡化為較易處理的齊性邊界條件,再結合特徵函數展開法求解出系統之近似解。並探討彈簧係數為週期函數時,系統之暫態行為,以及受到外力強迫振動時的穩態行為,可發現其共振頻率將會受到時間與彈簧係數變化頻率的影響。
This study discusses the dynamic analysis of a beam with functional time-dependent linear spring coefficient. The shifting function method has been used to simplify and solve the boundary problem. The associated mathematic system is a fourth order ordinary differential equation with time dependent boundary conditions. It is shifted and decomposed into five linear differential equations and at most four algebra equations. After finding the roots of the algebra equations, the approximated solution with good convergence of the beam system can be reconstructed. One can investigate the influence of the boundary parameters on transient solutions and steady state solutions.
[1] C. R. Edstrom. The vibrating beam with non-homogeneous boundary conditions. ASME J. Applied Mechanics. 48, 669-670 (1981).
[2] D. A. Grant. Beam vibrations with time-dependent boundary conditions. Journal of Sound and Vibration. 89(4), 519-522 (1983).
[3] G. A. Nothmann. Vibration of cantilever beam with prescribed end motion. ASME J. Applied Mechanics. 15, 327-334 (1948).
[4] G. Herrmann. Forced motions of Timoshenko beam theory. ASME J. Applied Mechanics. 77, 53-56 (1955).
[5] H. T. Chen, S. L. Sun, H. C. Huang and S. Y. Lee. Analytic closed solution for the heat conduction with time dependent heat convection coefficient at one boundary. CMES. 59(2), 107-126 (2010).
[6] H. I. Epstein. Vibrations with time-dependent internal conditions. Journal of Sound and Vibration. 39 (3), 297-303 (1975).
[7] J. G. Berry and P. M. Nagdhi. On the vibration of elastic bodies having time-dependent boundary conditions. Quarterly of Applied Mathematics. 14, 43-50 (1956).
[8] K. S. Aravamudan and P. N. Murthy. Non-linear vibration of beams with time-dependent boundary conditions. Int. J. Non-Linear Mechanics. 8, 195-212 (1973).
[9] M. H. Clayton and L. H. Royster. In‐plane inextensional vibrations of a circular ring with a time‐dependent displacement prescribed at the boundaries. The Journal of the Acoustical Society of America. 40(5), 1039-1044 (1966).
[10] M. Saeidifar and A. R. Ohadi. Bending vibration and buckling of non-uniform plate with time-dependent boundary conditions. Journal of Vibration and Control. 0(0), 1-23 (2010).
[11] R. D. Mindlin and L. E. Goodman. Beam vibrations with time-dependent boundary conditions. ASME J. Applied Mechanics. 17, 377-380 (1950).
[12] R. F. Fung and H. H. Chen. Steady-state response of the flexible connecting rod of a slider-crank mechanism with time-dependent boundary condition. Journal of Sound and Vibration. 199(2), 237-251 (1997).
[13] S. M. Lin. Pretwisted nonuniform beams with time-dependent elastic boundary conditions. American Institute of Aeronautics and Astronautics Journal. 36, 1516-1523 (1998).
[14] S. M. Lin. The closed-form solution for the forced vibration of non-uniform plates with distributed time-dependent boundary conditions. Journal of Sound and Vibration. 232(3), 493-509 (2000).
[15] S. M. Lin and S. Y. Lee. The forced vibration and boundary control of pretwisted Timoshenko beams with general time dependent elastic boundary conditions. Journal of Sound and Vibration. 254(1), 69-90 (2002).
[16] S. Y. Lee and S. M. Lin. Dynamic analysis of nonuniform beams with time-dependent elastic boundary conditions. ASME J. Applied Mechanics. 63, 474-478 (1996).
[17] S. Y. Lee and S. M. Lin. Non-uniform Timoshenko beams with time-dependent elastic boundary conditions. Journal of Sound and Vibration. 217, 223-238 (1998).
[18] S. Y. Lee and Y. H. Kuo. Exact solutions for the analysis of general elastically restrained nonuniform beams. ASME Journal of Applied Mechanics. 59(2), 205-212 (1992).
[19] S. Y. Lee, W. R. Wang and T. Y. Chen. A general approach on the mechanical analysis of non-uniform beams with non-homogeneous elastic boundary conditions. ASME J. Vibration and Acoustics.120, 164-169 (1998).
[20] S. Y. Lee, S. Y. Lu, Y. T. Liu, and H. C. Huang, Exact large deflection solutions for Timoshenko beams with nonlinear boundary conditions. CMES. 33(3), 293-312 (2008).
[21] S. S. Rao. Mechanical Vibrations Fourth Edition. Pearson Education Inc, New Jersey (2004).
[22] T. C. Yen and S. Kao. Vibration of beam-mass systems with time-dependent boundary conditions. ASME J. Applied Mechanics. 26, 353-356 (1959).
[23] 孫紹倫, 非線性邊界之樑的自由振動分析, 國立成功大學機械工程學系碩士論文, (2010).
[24] 黃惠楨, 邊界條件具有時變型熱傳係數之熱傳導問題分析, 國立成功大學機械工程學系碩士論文, (2009).
[25] 劉諺澤, 邊界材料性質隨時間變化之樑的振動分析, 國立成功大學機械工程學系碩士論文, (2009).