| 研究生: |
林宗穎 Lin, Zong-Ying |
|---|---|
| 論文名稱: |
週期排列之橢圓及粽子結構超材料之共振帶隙與消能機制 Resonant bandgap and energy dissipation mechanisms of metamaterials with a periodic array of elliptical and Zongzi structures |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 189 |
| 中文關鍵詞: | 局部共振 、帶隙 、平面波展開法 、頻散曲線 、橢圓 、偏心 、粽子超材料 |
| 外文關鍵詞: | local resonant, band-gap, palne wave expansion, dispersion curves, elliptical, eccentric circle, Zongzi metamaterial |
| 相關次數: | 點閱:104 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超材料是一種為了滿足特定需求所加工出來的人造材料,透過微結構精心的幾何設計與性能來加以調控,使材料能夠表現出奇特有趣的物理現象例如負折射率,隱形斗篷或剪力模數遠小於體積模數的五模超材料,而本論文藉由簡單的改變圓形內含物超材料的幾何或位置成為橢圓超材料與偏心圓超材料,並討論其頻散曲線完整路徑的變化,接著經由有限元素軟體的頻域分析搭配複合材料等效理論,計算材料整體的等效質量密度、等效轉動慣量以及等效材料係數,探討不同形式的共振消能機制和材料的雙負性質,並與實際尺度超材料模型之頻域模擬結果相互比對,而後期望能夠有進一步的全域模擬,分析地震波通過超材料的減振、折射、繞射等的現象,亦或是橢圓的交叉排列形式可能將產生更大的帶隙區間。
另外為延伸粽子超材料的研究,利用平面波展開法以及全域模擬的方式來加以驗證頻散曲線的正確性與合理性,說明粽子超材料確實能夠擁有超寬的帶隙區間。由於粽子的特殊結構,因此當受波傳激振時將導致結構體的偏心扭轉,透過此想法我們計算了粽子超材料的等效轉動慣量,並且證實了在超寬帶隙區間裡粽子主要由旋轉共振的行為進行波傳能量的衰減。
Metamaterial is a kind of man-made material processed to meet specific needs. It can be regulated through the careful geometric design and performance of the microstucture, so that the material can exhibit strange and interesting physical phenomena such as negative refractive index, or near zero effective shear modulus. In this thesis we consider an elliptical metamaterial and an eccentric circle metamaterial. Then, we utilize the homogenization theory of composite materials to caculate the effective mass density, moment of inertia and material coefficient, and discuss different forms of resonance energy dissipation mechanisms. In addition, in order to extend the research to Zongzi metamaterials, the correctness of the dispersion curves are verified by plane wave expansion method (PWE) and transmission(dB) simulation, which shows that Zongzi metamaterials can indeed have a wide band-gap. Due to the special structure of the Zongzi, the torsion mode will be induced when vibration is transmitted by the wave. Base on this idea, we calculated the effective moment of inertia of the Zongzi metamaterial, and confirmed that the mechanism of Zongzi is mainly attributed to the rotational resonance attenuation.
Abramowitz, M., & Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. Tenth Printing.
Alù, A., & Engheta, N. (2004). Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers. IEEE Transactions on Microwave Theory and Techniques, 52(1), 199-210.
Arnoldi, W. E. (1951). The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly of applied mathematics, 9(1), 17-29.
Ashcroft, N., Mermin, N., & Smoluchowski, R. (1977). Solid State Physics. Physics Today, 30(1), 61-65.
Atkinson, K. (1991). An introduction to numerical analysis: John wiley & sons.
Bai, Z., & Demmel, J. W. (1993). On swapping diagonal blocks in real Schur form. Linear Algebra and its Applications, 186, 75-95.
Baz, A. (2009). The structure of an active acoustic metamaterial with tunable effective density. New Journal of Physics, 11(12), 123010.
Bloch, F. (1929). Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für physik, 52(7-8), 555-600.
Brûlé, S., Enoch, S., & Guenneau, S. (2020). Emergence of seismic metamaterials: Current state and future perspectives. Physics Letters A, 384(1), 126034.
Brûlé, S., Javelaud, E., Enoch, S., & Guenneau, S. (2014). Experiments on seismic metamaterials: molding surface waves. Physical Review Letters, 112(13), 133901.
Bragg, W. H., & Bragg, W. L. (1913). The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 88(605), 428-438.
Brillouin, L. (1953). Wave propagation in periodic structures: electric filters and crystal lattices (Vol. 2): Dover publications.
Cao, Y., Hou, Z., & Liu, Y. (2004). Convergence problem of plane-wave expansion method for phononic crystals. Physics Letters A, 327(2), 247-253.
Casolo, S. (2006). Macroscopic modelling of structured materials: Relationship between orthotropic Cosserat continuum and rigid elements. International Journal of Solids and Structures, 43(3), 475-496.
Chang, C. S., & Liao, C. L. (1990). Constitutive relation for a particulate medium with the effect of particle rotation. International Journal of Solids and Structures, 26(4), 437-453.
Chen, T., Li, S., & Sun, H. (2012). Metamaterials application in sensing. Sensors, 12(3), 2742-2765.
Chen, Y., Hu, G., & Huang, G. (2016). An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural waves. Smart Materials and Structures, 25(10), 105036.
Christensen, J., & de Abajo, F. J. G. (2012). Anisotropic metamaterials for full control of acoustic waves. Physical Review Letters, 108(12), 124301.
Dal Poggetto, V. F., & Serpa, A. L. (2020). Elastic wave band gaps in a three-dimensional periodic metamaterial using the plane wave expansion method. International Journal of Mechanical Sciences, 184, 105841.
Dal Poggetto, V. F., & Serpa, A. L. (2021). Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method. Journal of Sound and Vibration, 495, 115909.
Fang, N., Lee, H., Sun, C., & Zhang, X. (2005). Sub-diffraction-limited optical imaging with a silver superlens. Science, 308(5721), 534-537.
Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456.
Favier, E., Nemati, N., & Perrot, C. (2020). Two-component versus three-component metasolids. The Journal of the Acoustical Society of America, 148(5), 3065-3074.
Favier, E., Nemati, N., Perrot, C., & He, Q.-C. (2018). Generalized analytic model for rotational and anisotropic metasolids. Journal of Physics Communications, 2(3), 035035.
Fokkema, D. R., Sleijpen, G. L., & Van der Vorst, H. A. (1998). Jacobi--Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM journal on scientific computing, 20(1), 94-125.
Graff, K. F. (2012). Wave motion in elastic solids. Courier Corporation.
Hill, R. (1963). Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids, 11(5), 357-372.
Hoffman, A. J., Alekseyev, L., Howard, S. S., Franz, K. J., Wasserman, D., Podolskiy, V. A., . . . Gmachl, C. (2007). Negative refraction in semiconductor metamaterials. Nature Materials, 6(12), 946-950.
Huang, H.-H., & Sun, C.-T. (2012). Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus. The Journal of the Acoustical Society of America, 132(4), 2887-2895.
Huang, H., & Sun, C. (2011). Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Philosophical Magazine, 91(6), 981-996.
Huang, H. H., & Sun, C. T. (2009). Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics, 11(1), 013003.
Huang, Z.-G., & Wu, T.-T. (2005). Analysis of wave propagation in phononic crystals with channel using the plane-wave expansion and supercell techniques. Paper presented at the Ultrasonics Symposium.
Jakšić, Z., Vuković, S., Matovic, J., & Tanasković, D. (2010). Negative refractive index metasurfaces for enhanced biosensing. Materials, 4(1), 1-36.
Kadic, M., Bückmann, T., Stenger, N., Thiel, M., & Wegener, M. (2012). On the practicability of pentamode mechanical metamaterials. Applied Physics Letters, 100(19), 191901.
Kasirga, T. S., Ertas, Y. N., & Bayindir, M. (2009). Microfluidics for reconfigurable electromagnetic metamaterials. Applied Physics Letters, 95(21).
Kittel, C. (2005). Introduction to solid state physics: John Wiley & sons, inc.
Kushwaha, M. S., Halevi, P., Martinez, G., Dobrzynski, L., & Djafari-Rouhani, B. (1994). Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49(4), 2313.
Lai, Y., Chen, H., Zhang, Z.-Q., & Chan, C. T. (2009). Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Physical Review Letters, 102(9), 093901.
Lai, Y., Wu, Y., Sheng, P., & Zhang, Z.-Q. (2011). Hybrid elastic solids. Nature Materials, 10(8), 620-624.
Lan, S., Kang, L., Schoen, D. T., Rodrigues, S. P., Cui, Y., Brongersma, M. L., & Cai, W. (2015). Backward phase-matching for nonlinear optical generation in negative-index materials. Nature Materials, 14(8), 807-811.
Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem of linear differential and integral operators.
Laurie, D. (1997). Calculation of Gauss-Kronrod quadrature rules. Mathematics of Computation, 66(219), 1133-1145.
Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite acoustic medium with simultaneously negative density and modulus. Physical Review Letters, 104(5), 054301.
Lehoucq, R. B., Sorensen, D. C., & Yang, C. (1998). ARPACK users' guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods: SIAM.
Liu, X.-N., Hu, G.-K., Huang, G.-L., & Sun, C.-T. (2011a). An elastic metamaterial with simultaneously negative mass density and bulk modulus. Applied Physics Letters, 98(25), 251907.
Liu, X.-N., Hu, G.-K., Huang, G.-L., & Sun, C.-T. (2011b). An elastic metamaterial with simultaneously negative mass density and bulk modulus. Applied Physics Letters, 98(25).
Liu, Y., Shen, X., Su, X., & Sun, C. T. (2016). Elastic Metamaterials With Low-Frequency Passbands Based on Lattice System With On-Site Potential. Journal of Vibration and Acoustics, 138(2).
Liu, Z., Chan, C. T., & Sheng, P. (2005). Analytic model of phononic crystals with local resonances. Physical Review B, 71(1), 014103.
Liu, Z., Lee, H., Xiong, Y., Sun, C., & Zhang, X. (2007). Far-field optical hyperlens magnifying sub-diffraction-limited objects. science, 315(5819), 1686-1686.
Love, A. (1944). Mathematical theory ofElasticity. New York: Dover Publications). NABARRO, FRN, 1985, Proc. R. SOC., Lond. A, 398(209), 1986.
Ma, F., Lin, Y.-S., Zhang, X., & Lee, C. (2014). Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light: Science & Applications, 3(5), e171-e171.
Mayr, E. W., & Meyer, A. R. (1982). The complexity of the word problems for commutative semigroups and polynomial ideals. Advances in mathematics, 46(3), 305-329.
McKeeman, W. M. (1962). Algorithm 145: Adaptive numerical integration by Simpson's rule. Communications of the ACM, 5(12), 604.
Miniaci, M., Krushynska, A., Bosia, F., & Pugno, N. M. (2016). Large scale mechanical metamaterials as seismic shields. New Journal of Physics, 18(8), 083041.
Palermo, A., Krödel, S., Marzani, A., & Daraio, C. (2016). Engineered metabarrier as shield from seismic surface waves. Scientific reports, 6(1), 1-10.
Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters, 85(18), 3966.
Pendry, J. B., Holden, A., Stewart, W., & Youngs, I. (1996). Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76(25), 4773.
Setyawan, W., & Curtarolo, S. (2010). High-throughput electronic band structure calculations: Challenges and tools. Computational Materials Science, 49(2), 299-312.
Shampine, L. F. (2008). Matlab program for quadrature in 2D. Applied Mathematics and Computation, 202(1), 266-274.
Shelby, R. A., Smith, D. R., & Schultz, S. (2001). Experimental verification of a negative index of refraction. science, 292(5514), 77-79.
Smith, D. R., Padilla, W. J., Vier, D., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18), 4184.
Smith, D. R., Pendry, J. B., & Wiltshire, M. C. (2004). Metamaterials and negative refractive index. Science, 305(5685), 788-792.
Smolyaninov, I. I., Hung, Y.-J., & Davis, C. C. (2007). Magnifying superlens in the visible frequency range. Science, 315(5819), 1699-1701.
Stewart, G. W. (2002). A Krylov--Schur algorithm for large eigenproblems. SIAM Journal on Matrix Analysis and Applications, 23(3), 601-614.
Sun, C.-T., & Vaidya, R. S. (1996). Prediction of composite properties from a representative volume element. Composites science and Technology, 56(2), 171-179.
Trefethen, L. N. (2008). Is Gauss quadrature better than Clenshaw–Curtis? SIAM review, 50(1), 67-87.
Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D. A., Bartal, G., & Zhang, X. (2008). Three-dimensional optical metamaterial with a negative refractive index. Nature, 455(7211), 376-379.
Vasseur, J. O., Deymier, P., Khelif, A., Lambin, P., Djafari-Rouhani, B., Akjouj, A., . . . Zemmouri, J. (2002). Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: A theoretical and experimental study. Physical Review E, 65(5), 056608.
Veselago, V. G. (1967). Electrodynamics of substances with simultaneously negative and. Usp. Fiz. Nauk, 92(7), 517.
Wang, R., Wang, X.-H., Gu, B.-Y., & Yang, G.-Z. (2001). Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals. Journal of Applied Physics, 90(9), 4307-4313.
Wang, Y.-Z., Li, F.-M., Huang, W.-H., & Wang, Y.-S. (2007). Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals. Journal of Physics: Condensed Matter, 19(49), 496204.
Watkins, D. S. (1995). Forward stability and transmission of shifts in the QR algorithm. SIAM Journal on Matrix Analysis and Applications, 16(2), 469-487.
Wu, Y., Lai, Y., & Zhang, Z.-Q. (2011). Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Physical Review Letters, 107(10), 105506.
Xu, T., Agrawal, A., Abashin, M., Chau, K. J., & Lezec, H. J. (2013). All-angle negative refraction and active flat lensing of ultraviolet light. Nature, 497(7450), 470-474.
Yao, S., Zhou, X., & Hu, G. (2008). Experimental study on negative effective mass in a 1D mass–spring system. New Journal of Physics, 10(4), 043020.
Zhang, P., Lee, H., & Lee, D. (2017). Calculation of degenerated eigenmodes with modified power method. Nuclear Engineering and Technology, 49(1), 17-28.
Zheng, Q. S., & Chen, T. (2001). New perspective on Poisson's ratios of elastic solids. Acta Mechanica, 150(3), 191-195.
Zhu, R., Chen, Y., Barnhart, M. V., Hu, G., Sun, C., & Huang, G. (2016). Experimental study of an adaptive elastic metamaterial controlled by electric circuits. Applied Physics Letters, 108(1).
Zhu, R., Liu, X., Hu, G., Sun, C., & Huang, G. (2014). Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nature communications, 5(1), 5510.
李冠慧(2019),地震超材料設計之減震模擬及效益評估,成功大學土木工程學系碩士論文。
郭騏豪(2022),類粽子形狀週期排列微結構之超材料機械性質探討,成功大學土木工程學系碩士論文。
陳靖衡(2022),曲率對週期排列諧振器共振板帶隙的影響,成功大學土木工程學系碩士論文。
彭昱翔(2014),週期性微極彈性材料之等效參數數值模擬,成功大學土木工程學系碩士論文。
黃少鈞(2022),對蘭姆波及雷利波之地震超材料設計與分析:三維全域數值模擬,成功大學土木工程學系碩士論文。
寧彥傑(2016),具負等效質量慣性矩之微極彈性模型設計,成功大學土木工程學系碩士論文。
趙乙謙(2021),預應力與阻尼系統對局部共振薄板之撓曲波帶隙的影響,成功大學土木工程學系碩士論文。