| 研究生: |
戴育陞 Dai, Yu-Sheng |
|---|---|
| 論文名稱: |
添加稻殼及稻殼炭產製功能性工程材料之探討 Study on using rice husk and rice husk char to produce functional engineering materials |
| 指導教授: |
張祖恩
Chang, Juu-En |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 稻殼 、稻殼炭 、輕質建材 、鈣矽調質 、隔熱調濕 |
| 外文關鍵詞: | rice husk, rice husk char, calcium silicon conditioning, heat insulation, humidity control |
| 相關次數: | 點閱:171 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
稻殼(rice husk,RH)富含矽元素,且為多孔結構,具備輕質特性,適合作為鈣矽水合漿體中輕質摻料。然而稻殼內含有大量有機物質,此類成分於高溫高鹼環境下會溶解至漿體中,使水泥顆粒表面被薄層覆蓋,導致系統中水泥水化作用受到干擾,進而影響製品強度。為克服上述問題,本研究將稻殼進行熱解處理生成稻殼炭(rice husk char,RHC)後再行添加,最後評估使用輕質摻料取代原製程中發泡鋁粉之可行性,以降低材料開發成本,並開發農業資材利用價值。
本研究以氫氧化鈣(Ca(OH)2)、二氧化矽(SiO2)、水泥(cement)等乾基材料進行鈣矽水合漿體產製,得知於12 atm、12 h條件進行養護時,製品擁有最佳抗壓強度,其Ca/Si為0.894,此為後續鈣矽調質之依據。將不同粒徑之稻殼RH1(>1.19 mm)、RH2(0.59~1.19 mm)、RH3(0.297~0.59 mm)及RH4(<0.297 mm)分別添加至鈣矽水合漿體中,並藉調升水固比(water to solids ratio,W/S)來探討稻殼粒徑與拌合水量對製品特性之影響。後續使用熱解條件為300~500℃之稻殼炭進行添加,探討其對製品抗壓強度之影響。最終綜合不同輕質摻料種類及蒸養條件所產製之製品結果,歸納最適蒸養條件,並測試輕質工程材料之隔熱、調濕等功能性。
研究結果顯示,在添加輕質摻料後,製品抗壓強度及密度均會有所下降。當W/S = 0.7 L/kg,稻殼及稻殼炭至少添加12 wt.%至鈣矽水合漿體時能符合AAC-6之規範,在調升W/S = 0.75 L/kg後,僅需添加4 wt.%稻殼即可符合AAC-6,其中RH1製品性能表現(performance factor,Pf)高出其他粒徑製品,粒徑越細對於製品強度發展越具不利影響;另以500℃熱解溫度產製之BC500,其製品性能表現則高於其他熱解溫度之稻殼炭製品。經鈣矽調質程序,將系統Ca/Si控制為0.894後,添加量為4~20 wt.% 之RH1及BC500製品分別可再提升8.22~26.71及9.12~31.84% 之抗壓強度。相較於鈣矽水合漿體,當添加12 wt.%稻殼時,於6 atm、20 h條件進行養護擁有最佳製品性能表現,顯示低溫下較有利稻殼製品強度發展,此時為13.33 MPa/g/cm3;添加12 wt.% 稻殼炭則可縮短水熱反應時間,於12 atm、8 h條件進行養護擁有最佳製品性能表現,此時為24.82 MPa/g/cm3。添加12 wt.%稻殼及稻殼炭之水合漿體製品導熱係數分別由0.88降至0.49及0.43 W/m‧K,而調濕特性則是在添加最少8 wt.% 稻殼炭時能夠符合JIS-A 1470-1調濕材料level 1之規範。綜合而言,稻殼及稻殼炭均能夠替代鋁粉發泡角色以提供製品輕質效果,藉此達到降低開發成本之目的,且摻料多孔、高比表面積之特性有助提升材料隔熱、調濕等功能,具有工程應用價值及環境友善性。
Rice husk (RH) is rich in silicon, and it has a porous structure with light-weight characteristics, suitable for using as light-weight admixtures. When using 12 atm and 12 h for curing, it has the highest performance factor (Pf) before adding the admixture. At this time, Ca/Si is 0.894. Because rice husk contains a large of organic matters that will cause a decrease of compressive strength, we pyrolyzed the rice husk into char and added. When W/S (water solid ratio) = 0.7 L/kg, rice husk and its char should be added at least 12 wt.% to meet the AAC-6 specification. The Pf of RH1 products is higher than that of other particle size products; the Pf of BC500 products is higher than other pyrolysis temperature rice husk char products. After the calcium and silicon conditioning process, the Ca/Si is controlled to 0.894, and the RH1 and BC500 products with an addition amount of 20 wt.% can increase the compressive strength of 26.71 and 31.84%, respectively. When adding 12 wt.% rice husk and curing at 6 atm for 20 h, the specimens has the highest Pf which is 13.33 MPa/g/cm3; adding 12 wt.% rice husk char can shorten the reaction time, when curing at 12 atm for 8 h has the highest Pf which is 24.82 MPa/g/cm3. The thermal conductivity of 12 wt.% rice husk and rice husk char products was reduced from 0.88 to 0.49 and 0.43 W/m‧K, respectively. It can comply with JIS-A 1470-1 specification when adding at least 8 wt.% rice husk char.
Akhtar, A., & Sarmah, A. K. (2018). Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties. Science of the Total Environment, 616, 408-416.
Alweendo, S. T., Johnson, O. T., Shongwe, M. B., Kavishe, F. P., & Borode, J. O. (2019). Synthesis, optimization and characterization of silicon carbide (SiC) from rice husk. Procedia Manufacturing, 35, 962-967.
Bruton, C. J., Phillips, B. L., Meike, A., Martin, S., & Viani, B. E. (1993). cement minerals at elevated temperature : Thermodynamic and structural characteristics. MRS Online Proceedings Library Archive, 333, 327–334.
Bezerra, E, M., Joaquim, A. P., Savastano, H. (2006). The effect of different mineral additions and synthetic fiber contents on properties of cement based composites. Cement & Concrete Composites, 28, 555-563.
Chabi, E., Doko, V., Hounkpè, S. P., & Adjovi, E. C. (2020). Study of cement composites on addition of rice husk. Case Studies in Construction Materials, 12.
Chabannes, M., Bénézet, J. C., Clerc, L., & Garcia-Diaz, E. (2014). Use of raw rice husk as natural aggregate in a lightweight insulating concrete: An innovative application. Construction and Building Materials, 70, 428-438.
Collis, L., & Smith, M. R. (Eds.). (1993). Aggregates: sand, gravel and crushed rock aggregates for construction purposes. Geological Society.
Evans, T. J., Majumdar, A. J., & Ryder, J. F. (1981). A semi-dry method for the production of lightweight glass-fibre-reinforced gypsum. International Journal of Cement Composites and Lightweight Concrete, 3(1), 41-44.
Eve, S., Gomina, M., Jernot, J. P., Ozouf, J. C., & Orange, G. (2007). Microstructure characterization of polyamide fibre/latex-filled plaster composites. Journal of the European Ceramic Society, 27(12), 3517-3525.
Faruk, O., Andrzej, K., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 37, 1552-1596.
Gupta, S., & Kua, H. W. (2018). Effect of water entrainment by pre-soaked biochar particles on strength and permeability of cement mortar. Construction and Building Materials, 159, 107-125.
Gupta, S., & Kua, H. W. (2020). Application of rice husk biochar as filler in cenosphere modified mortar: Preparation, characterization and performance under elevated temperature. Construction and Building Materials, 253, 119083.
Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25.
Hu, L., He, Z., & Zhang, S. (2020). Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement. Journal of Cleaner Production, 121744.
Holt, E., & Raivio, P. (2005). Use of gasification residues in autoclaved aerated concrete. Cement and Concrete Research.
Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polymer Engineering & Science, 49(7), 1253-1272.
Kaur, P., Kaur, P., & Kaur, K. (2020). Adsorptive removal of imazethapyr and imazamox from aqueous solution using modified rice husk. Journal of Cleaner Production, 244, 118699.
Khorami, M., & Ganjian, E. (2011). Comparing flexural behavior of fiber-cement composites reinforced bagasse: Wheat and eucalyptus. Construction and Building Materials, 25, 3661-3667.
Kochova, K., Gauvin, F., Schollbach, K., & Brouwers, H. J. H. (2020). Using alternative waste coir fibres as a reinforcement in cement-fibre composites. Construction and Building Materials, 231, 117121.
Kunchariyakun, K., Asavapisit, S., & Sombatsompop, K. (2015). Properties of autoclaved aerated concrete incorporating rice husk ash as partial replacement for fine aggregate. Cement and concrete composites, 55, 11-16.
Laukaitis, A., Kerienė, J., Kligys, M., Mikulskis, D., & Lekūnaitė, L. (2012). Influence of mechanically treated carbon fibre additives on structure formation and properties of autoclaved aerated concrete. Construction and Building Materials, 26(1), 362-371.
Latif, E., Tucker, S., Ciupala, M. A., Wijeyesekera, D. C., & Newport, D. (2014). Hygric properties of hemp bio-insulations with differing compositions. Construction and Building Materials, 66, 702-711.
Liang, G., Zhu, H., Zhang, Z., & Wu, Q. (2019). Effect of rice husk ash addition on the compressive strength and thermal stability of metakaolin based geopolymer. Construction and Building Materials, 222, 872-881.
Ludwig, H. M., & Zhang, W. (2015). Research review of cement clinker chemistry. Cement and Concrete Research, 78, 24-37.
Muthukrishnan, S., Gupta, S., & Kua, H. W. (2019). Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar. Theoretical and Applied Fracture Mechanics, 104, 102376.
Mitsuda, T., Sasaki, K., & Ishida, H. (1992). Phase evolution during autoclaving process of aerated concrete. Journal of the American Ceramic Society, 75(7), 1858-1863.
Miles, W. J., & Hamilton, R. D. (1994). Chemical methods of analysis for crystalline silica: A critical literature review. Analytica Chimica Acta, 286(1), 3-7.
Mo, L., Fang, J., Huang, B., Wang, A., & Deng, M. (2019). Combined effects of biochar and MgO expansive additive on the autogenous shrinkage, internal relative humidity and compressive strength of cement pastes. Construction and Building Materials, 229, 116877.
Narayanan, N., & Ramamurthy, K. (2000). Structure and properties of aerated concrete: a review. Cement and Concrete Composites, 22(5), 321-329.
Noumowe, A. (2005). Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to 200℃. Cement and Concrete Research, 35(11), 2192-2198.
Praneeth, S., Guo, R., Wang, T., Dubey, B. K., & Sarmah, A. K. (2020). Accelerated carbonation of biochar reinforced cement-fly ash composites: Enhancing and sequestering CO2 in building materials. Construction and Building Materials, 244, 118363.
Rong, M. Z., Zhang, M. Q., Liu, Y., Yang, G. C., & Zeng, H. M. (2001). The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology, 61(10), 1437-1447.
Rattanachu, P., Toolkasikorn, P., Tangchirapat, W., Chindaprasirt, P., & Jaturapitakkul, C. (2020). Performance of recycled aggregate concrete with rice husk ash as cement binder. Cement and Concrete Composites, 108, 103533.
Sandermann, W., Preusser, H. J., & Schweers, W. (1960). Studies on mineral-bonded wood materials. 3. The effect of wood extractives on the setting of cementbonded wood materials. Holzforschung, 14(3), 70-7.
Snoeck, D., Schaubroeck, D., Dubruel, P., & De Belie, N. (2014). Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50. Construction and Building Materials, 72, 148-157.
Staroń, A., Kijania-Kontak, M., Kozak, A., & Banach, M. (2020). Obtaining of oil blocks as a way to manage hazardous asbestos. Waste Management, 105, 180-189.
Syed, H., Nerella, R., & Madduru, S. R. C. (2020). Role of coconut coir fiber in concrete. Materials Today: Proceedings.
Vieira, F. R., Luna, C. M. R., Arce, G. L., & Ávila, I. (2020). Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass and Bioenergy, 132, 105412.
Vieira, S., Sharma, M., & Tandon, V. (2016). Ground granulated blast furnace slag (GGBS) and rice husk ash (RHA) uses in the production of geopolymer concrete. Geo-Chicago, 621-632.
Wang, S., Peng, X., Tang, L., Zeng, L., & Lan, C. (2014). Influence of inorganic admixtures on the 11 Å-tobermorite formation prepared from steel slags: XRD and FTIR analysis. Construction and Building Materials, 60, 42-47.
Yuzer, N., Cinar, Z., Akoz, F., Biricik, H., Gurkan, Y. Y., Kabay, N., & Kizilkanat, A. B. (2013). Influence of raw rice husk addition on structure and properties of concrete. Construction and Building materials, 44, 54-62.
Yang, Q., Zhang, S., Huang, S., & He, Y. (2000). Effect of ground quartz sand on properties of high-strength concrete in the steam-autoclaved curing. Cement and Concrete Research, 30(12), 1993-1998.
Zhang, Z., Wang, Q., Li, L., & Xu, G. (2020). Pyrolysis characteristics, kinetics and evolved volatiles determination of rice-husk-based distiller's grains. Biomass and Bioenergy, 135, 105525.
Zhai, M., Zhang, Y., Dong, P., & Liu, P. (2015). Characteristics of rice husk char gasification with steam. Fuel, 158, 42-49.
行政院農業委員會,農業統計年報,2018。
行政院農業委員會,水稻廢棄資材之利用,2010。
黃兆龍,混凝土性質與行為,第三版,詹氏書局,台北,2002。
陳吉村,瓜果類蔬果栽培介質及稻殼堆肥之研發與應用,2009。
許明發、郭文雄,複合材料,台北:高立出版,2004。
鄭日鏡,淺談纖維增強矽酸鈣板的蒸壓過程,福建建材,第二期,2011。
魯博、張林文、曾竟成。天然纖維複合材料。化學工業出版社: 北京,2005。
何錦城、蔡春進,中大型碾米廠設置稻殼氣化發電系統可行性評估。能源季刊32(3):129-143。2002。
顏聰,輕質骨材混凝土之力學性質,輕質骨材混凝土會刊,創刊號,第27~41頁,2004。
高健章,輕質混凝土在國內發展之研究,內政部建築研究所籌備處專題研究計畫成果報告,1993。
張壽山,稻殼燃燒爐燃燒效能之分析及設計改良,國立宜蘭大學生物機電工程學系,碩士論文,2008。
張繼譽,脫硫渣細料產製高壓蒸氣養護氣泡混凝土之研究,國立成功大學環境工程學系,碩士論文,2015。
蕭震銘,建築材料熱傳導性質對燃燒行為之影響研究,國立高雄第一科技大學環境與安全衛生工程系,碩士論文,2011。
劉裕意,添加卜作嵐材料對於混凝土耐久性影響之探討,國立台灣海洋大學河海工程學系,碩士論文,2001。
楊銘豐,改良磺化三聚氰胺甲醛樹脂之合成,國立臺灣師範大學化學系,碩士論文,2005。
楊絲亘,聚丙烯/稻殼複合材料之押出發泡研究,國立臺灣科技大學材料科學與工程學系,碩士論文,2016。
吳柏青、張谷川、陳貽倫,燃燒稻殼能源利用之研究,專題研究報告,臺灣大學農業機械工程學系。1980。
邱玟韶,焚化灰渣取代部分水泥生料燒製環保水泥之可行性研究,國立雲林科技大學營建工程系,碩士論文,2004。