簡易檢索 / 詳目顯示

研究生: 鍾明宏
Chung, Ming-Hung
論文名稱: 準分子雷射作用下矽基板之熔融現象之理論與實驗探討
An Theoretical and Experimental Study on the Melting of Silicon Substrate Subjected to Excimer Laser Radiation
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 88
中文關鍵詞: 熱傳雷射輔助式直接壓印反射率量測系統熔融時間熔融深度
外文關鍵詞: molten depth, heat transfer, molten time, Time resolved reflectivity measurement, Laser-assisted Direct Imprinting
相關次數: 點閱:136下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射輔助式直接壓印是利用雷射在試片表面瞬間產生高溫而使試片產生熔融,再以預壓力將所需要的圖形轉印到試片上。在本研究中,我們以準分子雷射做為熱源使矽基板的表面產生高溫而發生熔融,經由實驗的方法與模擬的數值比較,探討此加熱機制的所造成的熔融時間與矽基板的熔融深度。
    在熔融時間的實驗中以632.8 nm的氦氖雷射當作量測光源,量測矽基板表面的反射率,我們可以發現溫度的變化會造成反射率的改變,並且在熔融層出現時,反射率會維持一個水平,因此可以藉由反射率持平的時間定義出熔融的時間。此一實驗量測結果可以與理論模擬結果進行比對,得到非常一致的結果,間接證明理論模擬對矽基板的熔融時間與熔融深度的估算正確性。
    此外,本研究發現以1310 nm的二極體雷射量測矽基板背部的反射率時,反射率會隨著熔融層厚度的不同而有週期性的變化,藉此我們可以由反射率的週期估算出熔融深度的大小。

    Laser assisted direct imprinting (LADI) technology is a special kind of nanoimprint technology which applies a preloaded nano-mold and a high-energy laser pulse. The laser pulse can instantaneously melt the sample surface to make the pattern transfer from the mold to the sample. In this study, we will investigate both theoretically and experimentally the melting phenomenon of the silicon substrate subjected to the irradiation of an excimer laser pulse. By comparing the experimental and simulation data we can quantitatively determine the molten time and molten depth of silicon substrate, which play an important role in the LADI process.
    Experimentally, the time-resolved reflectivity (TRR) measurements are carried out with a probe He-Ne laser of 632.8 nm in wavelength. From the TRR measurements, we discover that the reflectivity signal as a function of time can be used to re-construct the time-history of substrate melting. Therefore, we could deduce the molten time and melting depth under different laser fluence.
    Furthermore, this study discovers that if we measured the back surface reflectivity by a diode laser of wavelength 1310 nm, the reflectivity signal will oscillate cyclically along with the increasing molten depth. With this cyclic signal of back surface reflectivity, the molten depth can also be estimated. Good agreements between experiments and simulation are observed.

    摘 要 I Abstract II 致 謝 III 目 錄 IV 圖目錄 VII 表目錄 XI 符號說明 XII 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-3 本文架構 8 第二章 反射率理論推導 9 2-1 反射率理論推導 9 2-1-1 光在半無限域中的反射率推導 9 2-1-2 光在平板中的反射率推導 12 2-1-3 光在兩層板中的反射 16 2-2 複數型折射係數 18 第三章 數值方法模擬雷射照射下之熱傳行為 20 3-1 雷射加熱之理論模型 20 3-2 雷射作用下之熱傳 21 3-2-1 材料無相變化時的溫度分佈 22 3-2-2 有相變化時的溫度分佈 23 3-3 模擬之結果與討論 25 3-3-1 模擬之各項參數 25 3-3-2 模擬之結果與討論 26 3-4 有限差分法模擬 33 3-4-1 差分方程式 33 3-4-2 模擬結果與討論 34 第四章 反射率之模擬與實驗 37 4-1 熔融深度與反射率之關係 37 4-2 模擬之熔融深度 41 4-3 反射率之模擬 44 4-4 反射率之實驗 46 4-4-1 實驗架構 46 4-4-2 實驗硬體設備 47 4-4-3 反射率量測結果 52 4-4-4 實驗結果與模擬比較 56 4-4-5 有限差分法模擬與實驗之比較 60 第五章 熔融深度之量測 63 5-1 實驗方法 63 5-2 實驗結果與討論 66 5-2-1 實驗結果 66 5-2-2 討論 69 5-3 以反射率計算熔融深度 69 5-3-1 材料背部反射率模擬架構 70 5-3-2 模擬結果 72 5-3-3 實驗結果與討論 74 5-3-4 實驗的修正 77 第六章 結論與未來展望 80 6-1 結論 80 6-2 未來展望 81 參考文獻 84

    [1] S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Nanoimprint
    lithography,” J. Vac. Sci. Technol. B, Vol. 14, pp 4129-4133 (1996).
    [2] S. Y. Chou, C. Keimel and J. Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Naturl, Vol. 417, pp 835-837 (2002).
    [3] W. R. Sooy, M. Geller and D. P. Bortfeld, “Switching of semiconductor reflectivity by a giant pulse laser,” Appl. Phys. Lett., Vol. 5, pp 54-56 (1964).
    [4] M. Birnbaum and T. L. Stocker, “Reflectivity enhancement of semiconductors by Q-switched ruby lasers,” J. Appl. Phys., Vol. 39, pp 6032-6036 (1968).
    [5] M. O. Lampert, J. M. Koebel and P. Siffert, “Temperature dependence of the reflectance of solid and liquid silicon,” J. Appl. Phys., Vol. 52, pp 4975-4976 (1981).
    [6] G. E. Jellison, Jr. and H. H. Burke, “The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths,” J. Appl. Phys., Vol. 60, pp 841-843 (1986).
    [7] K. D. Li and P. M. Fauchet, “Picosecond determination of the dielectric function of liquid silicon at 1064nm,” Solid State Commun. Vol. 61, pp 207-209 (1987).
    [8] P. Baeri, M. G. Grimaldi and R. Reitano, “Thermal properties of metastable phases studied by nanosecond laser heating,” High temp. High press., Vol. 23, pp 675-683 (1991).
    [9] S. Moon, M. Lee, M. Hatano, G. P. Grigoropoulos, “Interpretation of optical diagnostics for the analysis of laser crystallization of amorphous silicon films,” Microscale Thermophysical Engineering, Vol. 4, pp 25-38 (2000).
    [10] M. Hatano, S. Moon, M. Lee, K. Suzuki and C. P. Grigoropoulos, “Excimer laser-induced temperature field in melting and resolidification of silicon thin films,” J. Appl. Phys., Vol. 87, pp 36-43 (2000).
    [11] J. C. Wang, R. F. Wood and P. P. Pronko, “Theoretical analysis of thermal and mass transport in ion-implanted laser-annealed silicon,” Appl. Phys.Lett., Vol. 33, pp 455-458 (1978).
    [12] R. O. Bell, M. Toulemonde and P. Siffert, “Calculated temperature Distribution during laser annealing in silicon and cadmium telluride,” Appl. Phys., Vol. 19, pp 313-319 (1979).
    [13] M. Toulemonde, S. Unamuno, R. Heddache, M. O. Lampert, M. Hage-Ali and P. Siffert, “Time-resolved reflectivity and melting depth measurements using pulsed ruby laser on silicon,” Appl. Phys. A, Vol. 36, pp 31-36 (1985).
    [14] C. K. Ong, H. S. Tan and E. H. Sin, “Calculations of melting threshold energies of crystalline and amorphous materials due to pulsed-laser irradiation,” Mater. sci. eng., Vol. 79, pp 79-85 (1986).
    [15] S. Deunamuno and E. Fogarassy, “Athermal description of the melting of c- and a-silicon under pulsed excimer lasers,” Appl. Surf. Sci., Vol. 36, pp 1-11 (1989).
    [16] A. G. Cullis, H. C. Webber, N. G. Chew, J. M. Poate and P. Baeri, “Transitions to defective crystal and the amorphous state induced in elemental Si by laser quenching,” Phys. Rev. Lett., Vol. 49, pp 219-222 (1982).
    [17] P. Baeri, “Nanosecond laser-induced phase transitions and metastable phases quenching,” Phil. Mag. B., Vol. 61, pp 587-600 (1990).
    [18] F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, N.J., Prentice Hall (1993).
    [19] L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, Fundamentals of acoustics, Wiley, New York (1982).
    [20] A. Bejan, “Heat Transfer,” John Wiley & Sons, Inc., New York (1993).
    [21] F. B. Hsiao, C. P. Jen, D. B. Wang, C. H. Chuang, Y. C. Lee, C. P. Liu and H. J. Hsu, “An analytical modeling of heat transfer for laser-assisted nanoimprinting processes,” Comput. Mech., Vol. 37, pp 173-181(2006).
    [22] V. N. Tokarev and A. F. H. Kaplan, “An analytical modeling of time dependent pulsed laser melting,” J. Appl. Phys., Vol. 86, pp 2836-2846 (1999).
    [23] E. D. Palik, Handbook of optical constants of solids, Academic Press, Inc.(1985).
    [24] Goodfellow Corporation, Material Catalogue, USA (2002).
    [25] F. B. Hsiao, D. B. Wang and C. P. Jen, “Numerical investigation of thermal contact resistance between the mold and substrate on laser-assisted imprinting fabrication,” Numer. heat transf., A Appl., Vol. 49, pp 669-682 (2006)
    [26] K. M. Shvarev, B. A. Baum and P. V. Gel’d, “Optical properties of liquid silicon,” Sov. Phys. Solid State, Vol. 16, pp 2111-2112 (1975).
    [27] B. K. Sun, X. Zhang and C. P. Grigoropoulos, “Spectral optical function of silicon in the range of 1.13-4.96 eV at elevated temperatures,” Int. J. Heat Mass Transfer., Vol. 40, pp 1591-1600 (1997).
    [28] P. Tosin, W. Luthy and H. P. Weber, “Liquid carbon observed with reflection measurements on CVD-diamond under UV pulsed-laser irradiation,” Appl. Surf. Sci., Vol. 96-98, pp 384-386 (1996).
    [29] G. D. Ivlev and E. I. Gatskevich, “Liquid phase reflectivity under conditions of laser-induced silicon melting,” Semiconductors, Vol. 34, pp 759-762 (2000).
    [30] G. E. Jellison, Jr., D. H. Lowndes, D.N. Mashburn and R.F. Wood, “Time-resolved reflectivity measurements on silicon and germanium using a pulsed excimer KrF laser heating beam,” Phys. Rev. B, Vol. 34, pp 2407-2415 (1986).
    [31] S. Rubanov and P. R.Munroe, “FIB-induced damage in silicon,” J. microsc., Vol. 214, pp 213-221 (2004).
    [32] A. G. Cullis, N. G. Chew, H. C. Webber and D. J. Smith, “Orientation dependence of high speed silicon crystal growth from the melt,” J. cryst. growth., Vol. 68, pp 624-638 (1984).
    [33] M. O. Thompson, J. W. Mayer, A. G. Cullis, H. C. Webber, N. G. Chew, J. M. Poate and D. C. Jacobson, “Silicon melt, regrowth, and amorphization velocities during pulsed laser irradiation,” Phys. Rev. Lett., Vol. 50, pp 896-899 (1983).
    [34] D. E. Hoglund, M. O. Thompson and M. J. Aziz, “Experimental test of morphological stability theory for a planar interface during rapid solidification,” Phys. Rev. B, Vol. 58, pp 189-199 (1998).
    [35] C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation, J. Appl. Phys., Vol. 83, pp 3323-3336 (1998).
    [36] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,台灣 (2002).
    [37] O. S. Heavens, Optical properties of thin solid films, Dover Publications, Inc., New York, (1965).
    [38] Z. Knittl, Optics of thin films, John Wiley & Sons, London (1976).

    下載圖示 校內:2007-09-07公開
    校外:2007-09-07公開
    QR CODE