| 研究生: |
蘇祐正 Su, Yu-Cheng |
|---|---|
| 論文名稱: |
飛秒雷射於純鈦基材表面精微結構化處理之研究 Femtosecond Laser Micro-nano-structural Surface Processing on Titanium Substrate |
| 指導教授: |
方冠榮
Fung, Kuan-Zong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 鈦 、植體 、飛秒 、親水 、奈米 、一氧化鈦 |
| 外文關鍵詞: | Titanium, Implant, Femtosecond, hydrophilic, Nano, Titanium monoxide |
| 相關次數: | 點閱:49 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人工植牙是近年主要治療缺牙症狀的方法,由鈦為材料製成的牙根可提供長期的穩定性與媲美真牙的咬合力。許多研究指出植體表面的粗糙度、結構尺寸以及化學性質對於蛋白質吸附有相當重要的影響,而蛋白質的吸附有助於骨細胞與植體間的結合,良好的結合有助於減少術後發炎的程度並降低日後植牙失敗的機會。本研究乃藉由飛秒雷射表面處理使植體形成奈米尺度的結構化表面,而此表面的物化性對於骨整合效應會具有關鍵性的影響。
研究中首先利用飛秒雷射實驗系統於純鈦基材上進行加工參數最佳化,探討不同的雷射功率、光班尺寸、與脈衝次數於鈦基板上所形成誘導性週期結構的變化。利用不同的脈衝次數進行加工可以於相同面積下獲得不同尺寸大小的表面結構與形貌;隨著脈衝次數的增加,加工表面所形成的條紋狀結構的完整性與表面起伏亦會有所變化。第二部分則是以前一部分獲得之參數進行大面積連續加工,利用不同脈衝次數的加工可獲得具有次微米尺度的誘導週期結構與具有微米尺度的孔洞與島狀結構,加工表面粗糙度亦會隨著脈衝次數的增加而上升。研究分析結果得知,加工基板表面有氧化層形成,此氧化層厚度會隨著脈衝次數增加而提升,在150次脈衝下其厚度可達100nm。以大於100次的脈衝條件下加工基材表面會有一氧化鈦相形成,隨著氧化層的厚度與一氧化鈦晶量的增加,基材表面的親水性質有明顯的提升並能促進磷灰石的生成與吸附。
Artificial dental implants are recently used as a main treatment of tooth loss. Dental implants made of titanium may provide long-term stability and occlusion like real ones. According to late researches, the roughness, size of surface structuring and chemical properties is significantly effective for protein adhesion, which is beneficial to the apposition between osteoblast to the implants. Good osseointegration may reduce inflammation after surgery and avoid the chances to failure. Nano-scale structurization on implant surface was achieved via femtosecond surface treatment. Properties of surface are the key factor with osseointegration in this study. In this experiments treatment on titanium substrate within areas are carried out via femtosecond laser and need to be investigated. From analysis by SEM and AFM the surface morphology are obtained with different treatment by various pulse numbers and roughness increased with the pulse numbers. From XRD analysis it is clear that substrate surface formed titanium monoxide when applied pulses were higher than 100. Contact angle measurement of surfaces treated by various pulses showed that the change of surface morphology provided improvement on wettability of treated surfaces.
1. B. PI, "Intraosseous Anchorage Of Dental Prosthesis I Experimental Study," Scand J Plast Reconstructr Surg. vol. 3. 1969, pp. 81-100.
2. T. Albrektsson, P.I. Branemark, H.A. Hansson, and J. Lindstrom, "Osseointegrated Titanium Implants - Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man," Acta Orthopaedica Scandinavica. vol. 52, no. 2, 1981. 1981, pp. 155-170.
3. T. WT, Prentice-Hall, New York, 1995.
4. E.e. al, Eur. J. Oral Sci. vol. 106. 1998, p. 721.
5. B. R, A Biomechanical Study of Osseointegration, Goteborg University, 1996.
6. R.M. Pilliar, D.A. Deporter, P.A. Watson, and N. Valiquette, "Dental Implant Design - Effect on Bone Remodeling," Journal of Biomedical Materials Research. vol. 25, no. 4, Apr. 1991, pp. 467-483.
7. C. Maniatopoulos, R.M. Pilliar, and D.C. Smith, "Threaded Versus Porous-Surfaced Designs for Implant Stabilization in Bone-Endodontic Implant Model," Journal of Biomedical Materials Research. vol. 20, no. 9, Nov-Dec. 1986, pp. 1309-1333.
8. J.L. Ricci and H. Alexander, "Laser Microtexturing of Implant Surfaces for Enhanced Tissue Integration," Functional Biomaterials. vol. 198-1, 2001. 2001, pp. 179-202.
9. R. Stangl, B. Rinne, S. Kastl, and C. Hendrich, "The Influence of Pore Geometry in Cp Ti-Implants: A Cell Culture Investigation," European Cells & Materials. vol. 2, no. Cited March 7, 2003, July 12. 2001, pp. 1-9.
10. A. Joob-Fancsaly, T. Divinyi, A. Fazekas, C. Daroczi, A. Karacs, and G. Peto, "Pulsed Laser-Induced Micro- and Nanosized Morphology and Composition of Titanium Dental Implants," Smart Materials & Structures. vol. 11, no. 5, Oct. 2002, pp. 819-824.
11. G. Peto, A. Karacs, Z. Paszti, L. Guczi, T. Divinyi, and A. Joob, "Surface Treatment of Screw Shaped Titanium Dental Implants by High Intensity Laser Pulses," Applied Surface Science. vol. 186, no. 1-4, Jan 28. 2002, pp. 7-13.
12. M. Bereznai, I. Pelsoczi, Z. Toth, K. Turzo, M. Radnai, Z. Bor, and A. Fazekas, "Surface Modifications Induced by Ns and Sub-Ps Excimer Laser Pulses on Titanium Implant Material," Biomaterials. vol. 24, no. 23, Oct. 2003, pp. 4197-4203.
13. L.F. Cooper, "Biologic Determinants of Bone Formation for Osseointegration: Clues for Future Clinical Improvements," Journal of Prosthetic Dentistry. vol. 80, no. 4, Oct. 1998, pp. 439-449.
14. A. Nanci, J.D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal, and M.D. McKee, "Chemical Modification of Titanium Surfaces for Covalent Attachment of Biological Molecules," Journal of Biomedical Materials Research. vol. 40, no. 2, May. 1998, pp. 324-335.
15. A.E. Clark, L.L. Hench, and H.A. Paschall, "Influence of Surface Chemistry on Implant Interface Histology - Theoretical Basis for Implant Materials Selection," Journal of Biomedical Materials Research. vol. 10, no. 2, 1976. 1976, pp. 161-174.
16. M. Jarcho, "Biomaterial Aspects of Calcium Phosphates - Properties and Applications," Dental Clinics of North America. vol. 30, no. 1, Jan. 1986, pp. 25-47.
17. B. Kasemo, "Biocompatibility of Titanium Implants - Surface Science Aspects," Journal of Prosthetic Dentistry. vol. 49, no. 6, 1983. 1983, pp. 832-837.
18. K.A. Thomas, J.F. Kay, S.D. Cook, and M. Jarcho, "The Effect of Surface Macrotexture and Hydroxylapatite Coating on the Mechanical Strengths and Histologic Profiles of Titanium Implant Materials," Journal of Biomedical Materials Research. vol. 21, no. 12, Dec. 1987, pp. 1395-1414.
19. D.A. Puleo and A. Nanci, "Understanding and Controlling the Bone-Implant Interface," Biomaterials. vol. 20, no. 23-24, Dec. 1999, pp. 2311-2321.
20. S.Z. Boyan BD, Hambleton JC, "Response of Bone and Cartilage Cells to Biomaterials in Vivo and in Vitro," J Oral Implantol. vol. 19, no. 116. 1993, p. 22.
21. Z. Schwartz, L.D. Swain, T. Marshall, J. Sela, U. Gross, D. Amir, C. Mullermai, and B.D. Boyan, "Modulation of Matrix Vesicle Enzyme-Activity and Phosphatidylserine Content by Ceramic Implant Materials During Endosteal Bone Healing," Calcified Tissue International. vol. 51, no. 6, Dec. 1992, pp. 429-437.
22. J.G. Stanford CM, Fakhry A, Gratton D, Mellonig JT, Wanger W, "Outcomes of a Fluoride Modified Implant One Year after Loading in the Posterior-Maxilla When Placed with the Osteotome Surgical Technique," Appl Osseointegration Res vol. 5, no. 50. 2006, p. 5.
23. G. Mendonca, D.B.S. Mendonca, F.J.L. Aragao, and L.F. Cooper, "Advancing Dental Implant Surface Technology - from Micron- to Nanotopography," Biomaterials. vol. 29, no. 28, Oct. 2008, pp. 3822-3835.
24. Bloember.N, "Laser-Induced Electric Breakdown in Solids," Ieee Journal of Quantum Electronics. vol. QE10, no. 3, 1974. 1974, pp. 375-386.
25. C.B. Schaffer, A. Brodeur, and E. Mazur, "Laser-Induced Breakdown and Damage in Bulk Transparent Materials Induced by Tightly Focused Femtosecond Laser Pulses," Measurement Science & Technology. vol. 12, no. 11, Nov. 2001, pp. 1784-1794.
26. V. Oliveira, S. Ausset, and R. Vilar, "Surface Micro/Nanostructuring of Titanium under Stationary and Non-Stationary Femtosecond Laser Irradiation," Applied Surface Science. vol. 255, no. 17, Jun 15. 2009, pp. 7556-7560.
27. F.-X. D'Abzac, A.-M. Seydoux-Guillaume, J. Chmeleff, L. Datas, and F. Poitrasson, "In Situ Characterization of Infra Red Femtosecond Laser Ablation in Geological Samples. Part B: The Laser Induced Particles," Journal of Analytical Atomic Spectrometry. vol. 27, no. 1, 2012. 2012, pp. 108-119.
28. D. vonderLinde, K. SokolowskiTinten, and J. Bialkowski, "Laser-Solid Interaction in the Femtosecond Time Regime," Applied Surface Science. vol. 109, Feb. 1997, pp. 1-10.
29. Y.S. Lizhong Lu, Chenguang Xu, Guidong Xu, Jijun Wang, Baiqiang Xu, "The Influence of Pulse Width and Energy on Temperature Field in Metal Irradiated by Ultrashort-Pulsed Laser," Physics Procedia. vol. 32. 2012, pp. 39-47.
30. H. Hu, X. Wang, and H. Zhai, "High-Fluence Femtosecond Laser Ablation of Silica Glass: Effects of Laser-Induced Pressure," Journal of Physics D-Applied Physics. vol. 44, no. 13, Apr 6. 2011.
31. N.P. Lang, G.E. Salvi, G. Huynh-Ba, S. Ivanovski, N. Donos, and D.D. Bosshardt, "Early Osseointegration to Hydrophilic and Hydrophobic Implant Surfaces in Humans," Clinical Oral Implants Research. vol. 22, no. 4, Apr. 2011, pp. 349-356.
32. R. Wenzel, "Resistance of solid Surfaces to wetting by water," Industrial & Engineering Chemistry. 1936.
33. A.B.D.C.a.S. Baxter, "Wettability of Porous Surfaces," Trans. Faraday Soc, no. 40. 1944, pp. 546-551.
34. M. Ogino, F. Ohuchi, and L.L. Hench, "Compositional Dependence of the Formation of Calcium-Phosphate Films on Bioglass," Journal of Biomedical Materials Research. vol. 14, no. 1, 1980. 1980, pp. 55-64.
35. T. Kitsugi, T. Nakamura, T. Yamamura, T. Kokubu, T. Shibuya, and M. Takagi, "Sem-Epma Observation of 3 Types of Apatite-Containing Glass-Ceramics Implanted in Bone - the Variance of a Ca-P-Rich Layer," Journal of Biomedical Materials Research. vol. 21, no. 10, Oct. 1987, pp. 1255-1271.
36. C.O. T. Kokubo, S. Kotani, T. Kitsugi and T. Yamamuro, "Surface structure of bioactiveglass-Ceramic aw implanted into sheep and human vertebra," Bioceramics. vol. 2. 1990, pp. 113-121.
37. P.J. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, and K. Degroot, "The Role of Hydrated Silica, Titania, and Alumina in Inducing Apatite on Implants," Journal of Biomedical Materials Research. vol. 28, no. 1, Jan. 1994, pp. 7-15.
校內:2022-12-31公開